| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tospos |
⊢ ( 𝐹 ∈ Toset → 𝐹 ∈ Poset ) |
| 2 |
|
resspos |
⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ Poset ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ Poset ) |
| 4 |
|
eqid |
⊢ ( 𝐹 ↾s 𝐴 ) = ( 𝐹 ↾s 𝐴 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 6 |
4 5
|
ressbas |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐹 ) ) = ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ) |
| 7 |
|
inss2 |
⊢ ( 𝐴 ∩ ( Base ‘ 𝐹 ) ) ⊆ ( Base ‘ 𝐹 ) |
| 8 |
6 7
|
eqsstrrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) ) |
| 10 |
|
eqid |
⊢ ( le ‘ 𝐹 ) = ( le ‘ 𝐹 ) |
| 11 |
5 10
|
istos |
⊢ ( 𝐹 ∈ Toset ↔ ( 𝐹 ∈ Poset ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) ) |
| 12 |
11
|
simprbi |
⊢ ( 𝐹 ∈ Toset → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) |
| 14 |
|
ssralv |
⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) ) |
| 15 |
|
ssralv |
⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) ) |
| 16 |
15
|
ralimdv |
⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) ) |
| 17 |
14 16
|
syld |
⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) ) |
| 18 |
9 13 17
|
sylc |
⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) |
| 19 |
4 10
|
ressle |
⊢ ( 𝐴 ∈ 𝑉 → ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) ) |
| 20 |
19
|
breqd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ↔ 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ) ) |
| 21 |
19
|
breqd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ( le ‘ 𝐹 ) 𝑥 ↔ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) |
| 22 |
20 21
|
orbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ↔ ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∨ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) ) |
| 23 |
22
|
2ralbidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∨ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∨ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) ) |
| 25 |
18 24
|
mpbid |
⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∨ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) |
| 26 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) |
| 27 |
|
eqid |
⊢ ( le ‘ ( 𝐹 ↾s 𝐴 ) ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) |
| 28 |
26 27
|
istos |
⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ Toset ↔ ( ( 𝐹 ↾s 𝐴 ) ∈ Poset ∧ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∨ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) ) |
| 29 |
3 25 28
|
sylanbrc |
⊢ ( ( 𝐹 ∈ Toset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ Toset ) |