Step |
Hyp |
Ref |
Expression |
1 |
|
ovexd |
⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ V ) |
2 |
|
eqid |
⊢ ( 𝐹 ↾s 𝐴 ) = ( 𝐹 ↾s 𝐴 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
4 |
2 3
|
ressbas |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ( Base ‘ 𝐹 ) ) = ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ) |
5 |
|
inss2 |
⊢ ( 𝐴 ∩ ( Base ‘ 𝐹 ) ) ⊆ ( Base ‘ 𝐹 ) |
6 |
4 5
|
eqsstrrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) ) |
8 |
|
eqid |
⊢ ( le ‘ 𝐹 ) = ( le ‘ 𝐹 ) |
9 |
3 8
|
ispos |
⊢ ( 𝐹 ∈ Poset ↔ ( 𝐹 ∈ V ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
10 |
9
|
simprbi |
⊢ ( 𝐹 ∈ Poset → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) |
12 |
|
ssralv |
⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
13 |
12
|
ralimdv |
⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
14 |
|
ssralv |
⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
15 |
13 14
|
syld |
⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
16 |
15
|
ralimdv |
⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
17 |
|
ssralv |
⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
18 |
16 17
|
syld |
⊢ ( ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝐹 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) ) |
19 |
7 11 18
|
sylc |
⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ) |
20 |
2 8
|
ressle |
⊢ ( 𝐴 ∈ 𝑉 → ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) ) |
22 |
|
breq |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ↔ 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) |
23 |
|
breq |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ↔ 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ) ) |
24 |
|
breq |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( 𝑦 ( le ‘ 𝐹 ) 𝑥 ↔ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) |
25 |
23 24
|
anbi12d |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ↔ ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) ) ) |
26 |
25
|
imbi1d |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
27 |
|
breq |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( 𝑦 ( le ‘ 𝐹 ) 𝑧 ↔ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) |
28 |
23 27
|
anbi12d |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) ↔ ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) |
29 |
|
breq |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( 𝑥 ( le ‘ 𝐹 ) 𝑧 ↔ 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) |
30 |
28 29
|
imbi12d |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ↔ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) |
31 |
22 26 30
|
3anbi123d |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ↔ ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) ) |
32 |
31
|
ralbidv |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) ) |
33 |
32
|
2ralbidv |
⊢ ( ( le ‘ 𝐹 ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) ) |
34 |
21 33
|
syl |
⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ 𝐹 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐹 ) 𝑧 ) → 𝑥 ( le ‘ 𝐹 ) 𝑧 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) ) |
35 |
19 34
|
mpbid |
⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) |
36 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) = ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) |
37 |
|
eqid |
⊢ ( le ‘ ( 𝐹 ↾s 𝐴 ) ) = ( le ‘ ( 𝐹 ↾s 𝐴 ) ) |
38 |
36 37
|
ispos |
⊢ ( ( 𝐹 ↾s 𝐴 ) ∈ Poset ↔ ( ( 𝐹 ↾s 𝐴 ) ∈ V ∧ ∀ 𝑥 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ∀ 𝑧 ∈ ( Base ‘ ( 𝐹 ↾s 𝐴 ) ) ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ ( ( 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑦 ∧ 𝑦 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) → 𝑥 ( le ‘ ( 𝐹 ↾s 𝐴 ) ) 𝑧 ) ) ) ) |
39 |
1 35 38
|
sylanbrc |
⊢ ( ( 𝐹 ∈ Poset ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ↾s 𝐴 ) ∈ Poset ) |