Metamath Proof Explorer


Theorem nn0archi

Description: The monoid of the nonnegative integers is Archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018)

Ref Expression
Assertion nn0archi fld 𝑠 0 Archi

Proof

Step Hyp Ref Expression
1 df-refld fld = fld 𝑠
2 1 oveq1i fld 𝑠 0 = fld 𝑠 𝑠 0
3 resubdrg SubRing fld fld DivRing
4 3 simpli SubRing fld
5 nn0ssre 0
6 ressabs SubRing fld 0 fld 𝑠 𝑠 0 = fld 𝑠 0
7 4 5 6 mp2an fld 𝑠 𝑠 0 = fld 𝑠 0
8 2 7 eqtri fld 𝑠 0 = fld 𝑠 0
9 retos fld Toset
10 rearchi fld Archi
11 9 10 pm3.2i fld Toset fld Archi
12 nn0subm 0 SubMnd fld
13 subrgsubg SubRing fld SubGrp fld
14 subgsubm SubGrp fld SubMnd fld
15 4 13 14 mp2b SubMnd fld
16 1 subsubm SubMnd fld 0 SubMnd fld 0 SubMnd fld 0
17 15 16 ax-mp 0 SubMnd fld 0 SubMnd fld 0
18 12 5 17 mpbir2an 0 SubMnd fld
19 submarchi fld Toset fld Archi 0 SubMnd fld fld 𝑠 0 Archi
20 11 18 19 mp2an fld 𝑠 0 Archi
21 8 20 eqeltrri fld 𝑠 0 Archi