Metamath Proof Explorer


Theorem nn0archi

Description: The monoid of the nonnegative integers is Archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018)

Ref Expression
Assertion nn0archi fld𝑠0Archi

Proof

Step Hyp Ref Expression
1 df-refld fld=fld𝑠
2 1 oveq1i fld𝑠0=fld𝑠𝑠0
3 resubdrg SubRingfldfldDivRing
4 3 simpli SubRingfld
5 nn0ssre 0
6 ressabs SubRingfld0fld𝑠𝑠0=fld𝑠0
7 4 5 6 mp2an fld𝑠𝑠0=fld𝑠0
8 2 7 eqtri fld𝑠0=fld𝑠0
9 retos fldToset
10 rearchi fldArchi
11 9 10 pm3.2i fldTosetfldArchi
12 nn0subm 0SubMndfld
13 subrgsubg SubRingfldSubGrpfld
14 subgsubm SubGrpfldSubMndfld
15 4 13 14 mp2b SubMndfld
16 1 subsubm SubMndfld0SubMndfld0SubMndfld0
17 15 16 ax-mp 0SubMndfld0SubMndfld0
18 12 5 17 mpbir2an 0SubMndfld
19 submarchi fldTosetfldArchi0SubMndfldfld𝑠0Archi
20 11 18 19 mp2an fld𝑠0Archi
21 8 20 eqeltrri fld𝑠0Archi