| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subsubm.h |
|
| 2 |
|
eqid |
|
| 3 |
2
|
submss |
|
| 4 |
3
|
adantl |
|
| 5 |
1
|
submbas |
|
| 6 |
5
|
adantr |
|
| 7 |
4 6
|
sseqtrrd |
|
| 8 |
|
eqid |
|
| 9 |
8
|
submss |
|
| 10 |
9
|
adantr |
|
| 11 |
7 10
|
sstrd |
|
| 12 |
|
eqid |
|
| 13 |
1 12
|
subm0 |
|
| 14 |
13
|
adantr |
|
| 15 |
|
eqid |
|
| 16 |
15
|
subm0cl |
|
| 17 |
16
|
adantl |
|
| 18 |
14 17
|
eqeltrd |
|
| 19 |
1
|
oveq1i |
|
| 20 |
|
ressabs |
|
| 21 |
19 20
|
eqtrid |
|
| 22 |
7 21
|
syldan |
|
| 23 |
|
eqid |
|
| 24 |
23
|
submmnd |
|
| 25 |
24
|
adantl |
|
| 26 |
22 25
|
eqeltrrd |
|
| 27 |
|
submrcl |
|
| 28 |
27
|
adantr |
|
| 29 |
|
eqid |
|
| 30 |
8 12 29
|
issubm2 |
|
| 31 |
28 30
|
syl |
|
| 32 |
11 18 26 31
|
mpbir3and |
|
| 33 |
32 7
|
jca |
|
| 34 |
|
simprr |
|
| 35 |
5
|
adantr |
|
| 36 |
34 35
|
sseqtrd |
|
| 37 |
13
|
adantr |
|
| 38 |
12
|
subm0cl |
|
| 39 |
38
|
ad2antrl |
|
| 40 |
37 39
|
eqeltrrd |
|
| 41 |
21
|
adantrl |
|
| 42 |
29
|
submmnd |
|
| 43 |
42
|
ad2antrl |
|
| 44 |
41 43
|
eqeltrd |
|
| 45 |
1
|
submmnd |
|
| 46 |
45
|
adantr |
|
| 47 |
2 15 23
|
issubm2 |
|
| 48 |
46 47
|
syl |
|
| 49 |
36 40 44 48
|
mpbir3and |
|
| 50 |
33 49
|
impbida |
|