| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsubm.h |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 2 | submss |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 | 1 | submbas |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 | 4 6 | sseqtrrd |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 8 | submss |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 7 10 | sstrd |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 1 12 | subm0 |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 | subm0cl |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 | 14 17 | eqeltrd |  | 
						
							| 19 | 1 | oveq1i |  | 
						
							| 20 |  | ressabs |  | 
						
							| 21 | 19 20 | eqtrid |  | 
						
							| 22 | 7 21 | syldan |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 23 | submmnd |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 | 22 25 | eqeltrrd |  | 
						
							| 27 |  | submrcl |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 | 8 12 29 | issubm2 |  | 
						
							| 31 | 28 30 | syl |  | 
						
							| 32 | 11 18 26 31 | mpbir3and |  | 
						
							| 33 | 32 7 | jca |  | 
						
							| 34 |  | simprr |  | 
						
							| 35 | 5 | adantr |  | 
						
							| 36 | 34 35 | sseqtrd |  | 
						
							| 37 | 13 | adantr |  | 
						
							| 38 | 12 | subm0cl |  | 
						
							| 39 | 38 | ad2antrl |  | 
						
							| 40 | 37 39 | eqeltrrd |  | 
						
							| 41 | 21 | adantrl |  | 
						
							| 42 | 29 | submmnd |  | 
						
							| 43 | 42 | ad2antrl |  | 
						
							| 44 | 41 43 | eqeltrd |  | 
						
							| 45 | 1 | submmnd |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 | 2 15 23 | issubm2 |  | 
						
							| 48 | 46 47 | syl |  | 
						
							| 49 | 36 40 44 48 | mpbir3and |  | 
						
							| 50 | 33 49 | impbida |  |