Step |
Hyp |
Ref |
Expression |
1 |
|
subsubm.h |
|- H = ( G |`s S ) |
2 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
3 |
2
|
submss |
|- ( A e. ( SubMnd ` H ) -> A C_ ( Base ` H ) ) |
4 |
3
|
adantl |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> A C_ ( Base ` H ) ) |
5 |
1
|
submbas |
|- ( S e. ( SubMnd ` G ) -> S = ( Base ` H ) ) |
6 |
5
|
adantr |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> S = ( Base ` H ) ) |
7 |
4 6
|
sseqtrrd |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> A C_ S ) |
8 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
9 |
8
|
submss |
|- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
10 |
9
|
adantr |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> S C_ ( Base ` G ) ) |
11 |
7 10
|
sstrd |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> A C_ ( Base ` G ) ) |
12 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
13 |
1 12
|
subm0 |
|- ( S e. ( SubMnd ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
14 |
13
|
adantr |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( 0g ` G ) = ( 0g ` H ) ) |
15 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
16 |
15
|
subm0cl |
|- ( A e. ( SubMnd ` H ) -> ( 0g ` H ) e. A ) |
17 |
16
|
adantl |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( 0g ` H ) e. A ) |
18 |
14 17
|
eqeltrd |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( 0g ` G ) e. A ) |
19 |
1
|
oveq1i |
|- ( H |`s A ) = ( ( G |`s S ) |`s A ) |
20 |
|
ressabs |
|- ( ( S e. ( SubMnd ` G ) /\ A C_ S ) -> ( ( G |`s S ) |`s A ) = ( G |`s A ) ) |
21 |
19 20
|
eqtrid |
|- ( ( S e. ( SubMnd ` G ) /\ A C_ S ) -> ( H |`s A ) = ( G |`s A ) ) |
22 |
7 21
|
syldan |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( H |`s A ) = ( G |`s A ) ) |
23 |
|
eqid |
|- ( H |`s A ) = ( H |`s A ) |
24 |
23
|
submmnd |
|- ( A e. ( SubMnd ` H ) -> ( H |`s A ) e. Mnd ) |
25 |
24
|
adantl |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( H |`s A ) e. Mnd ) |
26 |
22 25
|
eqeltrrd |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( G |`s A ) e. Mnd ) |
27 |
|
submrcl |
|- ( S e. ( SubMnd ` G ) -> G e. Mnd ) |
28 |
27
|
adantr |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> G e. Mnd ) |
29 |
|
eqid |
|- ( G |`s A ) = ( G |`s A ) |
30 |
8 12 29
|
issubm2 |
|- ( G e. Mnd -> ( A e. ( SubMnd ` G ) <-> ( A C_ ( Base ` G ) /\ ( 0g ` G ) e. A /\ ( G |`s A ) e. Mnd ) ) ) |
31 |
28 30
|
syl |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( A e. ( SubMnd ` G ) <-> ( A C_ ( Base ` G ) /\ ( 0g ` G ) e. A /\ ( G |`s A ) e. Mnd ) ) ) |
32 |
11 18 26 31
|
mpbir3and |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> A e. ( SubMnd ` G ) ) |
33 |
32 7
|
jca |
|- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( A e. ( SubMnd ` G ) /\ A C_ S ) ) |
34 |
|
simprr |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> A C_ S ) |
35 |
5
|
adantr |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> S = ( Base ` H ) ) |
36 |
34 35
|
sseqtrd |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> A C_ ( Base ` H ) ) |
37 |
13
|
adantr |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( 0g ` G ) = ( 0g ` H ) ) |
38 |
12
|
subm0cl |
|- ( A e. ( SubMnd ` G ) -> ( 0g ` G ) e. A ) |
39 |
38
|
ad2antrl |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( 0g ` G ) e. A ) |
40 |
37 39
|
eqeltrrd |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( 0g ` H ) e. A ) |
41 |
21
|
adantrl |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( H |`s A ) = ( G |`s A ) ) |
42 |
29
|
submmnd |
|- ( A e. ( SubMnd ` G ) -> ( G |`s A ) e. Mnd ) |
43 |
42
|
ad2antrl |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( G |`s A ) e. Mnd ) |
44 |
41 43
|
eqeltrd |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( H |`s A ) e. Mnd ) |
45 |
1
|
submmnd |
|- ( S e. ( SubMnd ` G ) -> H e. Mnd ) |
46 |
45
|
adantr |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> H e. Mnd ) |
47 |
2 15 23
|
issubm2 |
|- ( H e. Mnd -> ( A e. ( SubMnd ` H ) <-> ( A C_ ( Base ` H ) /\ ( 0g ` H ) e. A /\ ( H |`s A ) e. Mnd ) ) ) |
48 |
46 47
|
syl |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( A e. ( SubMnd ` H ) <-> ( A C_ ( Base ` H ) /\ ( 0g ` H ) e. A /\ ( H |`s A ) e. Mnd ) ) ) |
49 |
36 40 44 48
|
mpbir3and |
|- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> A e. ( SubMnd ` H ) ) |
50 |
33 49
|
impbida |
|- ( S e. ( SubMnd ` G ) -> ( A e. ( SubMnd ` H ) <-> ( A e. ( SubMnd ` G ) /\ A C_ S ) ) ) |