Step |
Hyp |
Ref |
Expression |
1 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
2 |
1
|
oveq1i |
|- ( RRfld |`s NN0 ) = ( ( CCfld |`s RR ) |`s NN0 ) |
3 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
4 |
3
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
5 |
|
nn0ssre |
|- NN0 C_ RR |
6 |
|
ressabs |
|- ( ( RR e. ( SubRing ` CCfld ) /\ NN0 C_ RR ) -> ( ( CCfld |`s RR ) |`s NN0 ) = ( CCfld |`s NN0 ) ) |
7 |
4 5 6
|
mp2an |
|- ( ( CCfld |`s RR ) |`s NN0 ) = ( CCfld |`s NN0 ) |
8 |
2 7
|
eqtri |
|- ( RRfld |`s NN0 ) = ( CCfld |`s NN0 ) |
9 |
|
retos |
|- RRfld e. Toset |
10 |
|
rearchi |
|- RRfld e. Archi |
11 |
9 10
|
pm3.2i |
|- ( RRfld e. Toset /\ RRfld e. Archi ) |
12 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
13 |
|
subrgsubg |
|- ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) |
14 |
|
subgsubm |
|- ( RR e. ( SubGrp ` CCfld ) -> RR e. ( SubMnd ` CCfld ) ) |
15 |
4 13 14
|
mp2b |
|- RR e. ( SubMnd ` CCfld ) |
16 |
1
|
subsubm |
|- ( RR e. ( SubMnd ` CCfld ) -> ( NN0 e. ( SubMnd ` RRfld ) <-> ( NN0 e. ( SubMnd ` CCfld ) /\ NN0 C_ RR ) ) ) |
17 |
15 16
|
ax-mp |
|- ( NN0 e. ( SubMnd ` RRfld ) <-> ( NN0 e. ( SubMnd ` CCfld ) /\ NN0 C_ RR ) ) |
18 |
12 5 17
|
mpbir2an |
|- NN0 e. ( SubMnd ` RRfld ) |
19 |
|
submarchi |
|- ( ( ( RRfld e. Toset /\ RRfld e. Archi ) /\ NN0 e. ( SubMnd ` RRfld ) ) -> ( RRfld |`s NN0 ) e. Archi ) |
20 |
11 18 19
|
mp2an |
|- ( RRfld |`s NN0 ) e. Archi |
21 |
8 20
|
eqeltrri |
|- ( CCfld |`s NN0 ) e. Archi |