| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
| 2 |
1
|
oveq1i |
|- ( RRfld |`s NN0 ) = ( ( CCfld |`s RR ) |`s NN0 ) |
| 3 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
| 4 |
3
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
| 5 |
|
nn0ssre |
|- NN0 C_ RR |
| 6 |
|
ressabs |
|- ( ( RR e. ( SubRing ` CCfld ) /\ NN0 C_ RR ) -> ( ( CCfld |`s RR ) |`s NN0 ) = ( CCfld |`s NN0 ) ) |
| 7 |
4 5 6
|
mp2an |
|- ( ( CCfld |`s RR ) |`s NN0 ) = ( CCfld |`s NN0 ) |
| 8 |
2 7
|
eqtri |
|- ( RRfld |`s NN0 ) = ( CCfld |`s NN0 ) |
| 9 |
|
retos |
|- RRfld e. Toset |
| 10 |
|
rearchi |
|- RRfld e. Archi |
| 11 |
9 10
|
pm3.2i |
|- ( RRfld e. Toset /\ RRfld e. Archi ) |
| 12 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
| 13 |
|
subrgsubg |
|- ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) |
| 14 |
|
subgsubm |
|- ( RR e. ( SubGrp ` CCfld ) -> RR e. ( SubMnd ` CCfld ) ) |
| 15 |
4 13 14
|
mp2b |
|- RR e. ( SubMnd ` CCfld ) |
| 16 |
1
|
subsubm |
|- ( RR e. ( SubMnd ` CCfld ) -> ( NN0 e. ( SubMnd ` RRfld ) <-> ( NN0 e. ( SubMnd ` CCfld ) /\ NN0 C_ RR ) ) ) |
| 17 |
15 16
|
ax-mp |
|- ( NN0 e. ( SubMnd ` RRfld ) <-> ( NN0 e. ( SubMnd ` CCfld ) /\ NN0 C_ RR ) ) |
| 18 |
12 5 17
|
mpbir2an |
|- NN0 e. ( SubMnd ` RRfld ) |
| 19 |
|
submarchi |
|- ( ( ( RRfld e. Toset /\ RRfld e. Archi ) /\ NN0 e. ( SubMnd ` RRfld ) ) -> ( RRfld |`s NN0 ) e. Archi ) |
| 20 |
11 18 19
|
mp2an |
|- ( RRfld |`s NN0 ) e. Archi |
| 21 |
8 20
|
eqeltrri |
|- ( CCfld |`s NN0 ) e. Archi |