| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-refld |  |-  RRfld = ( CCfld |`s RR ) | 
						
							| 2 | 1 | oveq1i |  |-  ( RRfld |`s NN0 ) = ( ( CCfld |`s RR ) |`s NN0 ) | 
						
							| 3 |  | resubdrg |  |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) | 
						
							| 4 | 3 | simpli |  |-  RR e. ( SubRing ` CCfld ) | 
						
							| 5 |  | nn0ssre |  |-  NN0 C_ RR | 
						
							| 6 |  | ressabs |  |-  ( ( RR e. ( SubRing ` CCfld ) /\ NN0 C_ RR ) -> ( ( CCfld |`s RR ) |`s NN0 ) = ( CCfld |`s NN0 ) ) | 
						
							| 7 | 4 5 6 | mp2an |  |-  ( ( CCfld |`s RR ) |`s NN0 ) = ( CCfld |`s NN0 ) | 
						
							| 8 | 2 7 | eqtri |  |-  ( RRfld |`s NN0 ) = ( CCfld |`s NN0 ) | 
						
							| 9 |  | retos |  |-  RRfld e. Toset | 
						
							| 10 |  | rearchi |  |-  RRfld e. Archi | 
						
							| 11 | 9 10 | pm3.2i |  |-  ( RRfld e. Toset /\ RRfld e. Archi ) | 
						
							| 12 |  | nn0subm |  |-  NN0 e. ( SubMnd ` CCfld ) | 
						
							| 13 |  | subrgsubg |  |-  ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) | 
						
							| 14 |  | subgsubm |  |-  ( RR e. ( SubGrp ` CCfld ) -> RR e. ( SubMnd ` CCfld ) ) | 
						
							| 15 | 4 13 14 | mp2b |  |-  RR e. ( SubMnd ` CCfld ) | 
						
							| 16 | 1 | subsubm |  |-  ( RR e. ( SubMnd ` CCfld ) -> ( NN0 e. ( SubMnd ` RRfld ) <-> ( NN0 e. ( SubMnd ` CCfld ) /\ NN0 C_ RR ) ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( NN0 e. ( SubMnd ` RRfld ) <-> ( NN0 e. ( SubMnd ` CCfld ) /\ NN0 C_ RR ) ) | 
						
							| 18 | 12 5 17 | mpbir2an |  |-  NN0 e. ( SubMnd ` RRfld ) | 
						
							| 19 |  | submarchi |  |-  ( ( ( RRfld e. Toset /\ RRfld e. Archi ) /\ NN0 e. ( SubMnd ` RRfld ) ) -> ( RRfld |`s NN0 ) e. Archi ) | 
						
							| 20 | 11 18 19 | mp2an |  |-  ( RRfld |`s NN0 ) e. Archi | 
						
							| 21 | 8 20 | eqeltrri |  |-  ( CCfld |`s NN0 ) e. Archi |