Description: The real numbers are a totally ordered set. (Contributed by Thierry Arnoux, 21-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | retos | |- RRfld e. Toset |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | |- < Or RR |
|
| 2 | idref | |- ( ( _I |` RR ) C_ <_ <-> A. x e. RR x <_ x ) |
|
| 3 | leid | |- ( x e. RR -> x <_ x ) |
|
| 4 | 2 3 | mprgbir | |- ( _I |` RR ) C_ <_ |
| 5 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 6 | 5 | ovexi | |- RRfld e. _V |
| 7 | rebase | |- RR = ( Base ` RRfld ) |
|
| 8 | rele2 | |- <_ = ( le ` RRfld ) |
|
| 9 | relt | |- < = ( lt ` RRfld ) |
|
| 10 | 7 8 9 | tosso | |- ( RRfld e. _V -> ( RRfld e. Toset <-> ( < Or RR /\ ( _I |` RR ) C_ <_ ) ) ) |
| 11 | 6 10 | ax-mp | |- ( RRfld e. Toset <-> ( < Or RR /\ ( _I |` RR ) C_ <_ ) ) |
| 12 | 1 4 11 | mpbir2an | |- RRfld e. Toset |