Metamath Proof Explorer


Theorem xrge0slmod

Description: The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypotheses xrge0slmod.1 G = 𝑠 * 𝑠 0 +∞
xrge0slmod.2 W = G 𝑣 0 +∞
Assertion xrge0slmod W SLMod

Proof

Step Hyp Ref Expression
1 xrge0slmod.1 G = 𝑠 * 𝑠 0 +∞
2 xrge0slmod.2 W = G 𝑣 0 +∞
3 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
4 1 3 eqeltri G CMnd
5 ovex 0 +∞ V
6 2 resvcmn 0 +∞ V G CMnd W CMnd
7 5 6 ax-mp G CMnd W CMnd
8 4 7 mpbi W CMnd
9 rge0srg fld 𝑠 0 +∞ SRing
10 icossicc 0 +∞ 0 +∞
11 simplr q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ r 0 +∞
12 10 11 sselid q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ r 0 +∞
13 simprr q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ w 0 +∞
14 ge0xmulcl r 0 +∞ w 0 +∞ r 𝑒 w 0 +∞
15 12 13 14 syl2anc q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ r 𝑒 w 0 +∞
16 simprl q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ x 0 +∞
17 xrge0adddi w 0 +∞ x 0 +∞ r 0 +∞ r 𝑒 w + 𝑒 x = r 𝑒 w + 𝑒 r 𝑒 x
18 13 16 12 17 syl3anc q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ r 𝑒 w + 𝑒 x = r 𝑒 w + 𝑒 r 𝑒 x
19 rge0ssre 0 +∞
20 simpll q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q 0 +∞
21 19 20 sselid q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q
22 19 11 sselid q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ r
23 rexadd q r q + 𝑒 r = q + r
24 21 22 23 syl2anc q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q + 𝑒 r = q + r
25 24 oveq1d q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q + 𝑒 r 𝑒 w = q + r 𝑒 w
26 10 20 sselid q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q 0 +∞
27 xrge0adddir q 0 +∞ r 0 +∞ w 0 +∞ q + 𝑒 r 𝑒 w = q 𝑒 w + 𝑒 r 𝑒 w
28 26 12 13 27 syl3anc q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q + 𝑒 r 𝑒 w = q 𝑒 w + 𝑒 r 𝑒 w
29 25 28 eqtr3d q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q + r 𝑒 w = q 𝑒 w + 𝑒 r 𝑒 w
30 15 18 29 3jca q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ r 𝑒 w 0 +∞ r 𝑒 w + 𝑒 x = r 𝑒 w + 𝑒 r 𝑒 x q + r 𝑒 w = q 𝑒 w + 𝑒 r 𝑒 w
31 rexmul q r q 𝑒 r = q r
32 21 22 31 syl2anc q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q 𝑒 r = q r
33 32 oveq1d q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q 𝑒 r 𝑒 w = q r 𝑒 w
34 21 rexrd q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q *
35 22 rexrd q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ r *
36 iccssxr 0 +∞ *
37 36 13 sselid q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ w *
38 xmulass q * r * w * q 𝑒 r 𝑒 w = q 𝑒 r 𝑒 w
39 34 35 37 38 syl3anc q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q 𝑒 r 𝑒 w = q 𝑒 r 𝑒 w
40 33 39 eqtr3d q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q r 𝑒 w = q 𝑒 r 𝑒 w
41 xmulid2 w * 1 𝑒 w = w
42 37 41 syl q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ 1 𝑒 w = w
43 xmul02 w * 0 𝑒 w = 0
44 37 43 syl q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ 0 𝑒 w = 0
45 40 42 44 3jca q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ q r 𝑒 w = q 𝑒 r 𝑒 w 1 𝑒 w = w 0 𝑒 w = 0
46 30 45 jca q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ r 𝑒 w 0 +∞ r 𝑒 w + 𝑒 x = r 𝑒 w + 𝑒 r 𝑒 x q + r 𝑒 w = q 𝑒 w + 𝑒 r 𝑒 w q r 𝑒 w = q 𝑒 r 𝑒 w 1 𝑒 w = w 0 𝑒 w = 0
47 46 ralrimivva q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ r 𝑒 w 0 +∞ r 𝑒 w + 𝑒 x = r 𝑒 w + 𝑒 r 𝑒 x q + r 𝑒 w = q 𝑒 w + 𝑒 r 𝑒 w q r 𝑒 w = q 𝑒 r 𝑒 w 1 𝑒 w = w 0 𝑒 w = 0
48 47 rgen2 q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ r 𝑒 w 0 +∞ r 𝑒 w + 𝑒 x = r 𝑒 w + 𝑒 r 𝑒 x q + r 𝑒 w = q 𝑒 w + 𝑒 r 𝑒 w q r 𝑒 w = q 𝑒 r 𝑒 w 1 𝑒 w = w 0 𝑒 w = 0
49 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
50 1 fveq2i Base G = Base 𝑠 * 𝑠 0 +∞
51 49 50 eqtr4i 0 +∞ = Base G
52 2 51 resvbas 0 +∞ V 0 +∞ = Base W
53 5 52 ax-mp 0 +∞ = Base W
54 xrge0plusg + 𝑒 = + 𝑠 * 𝑠 0 +∞
55 1 fveq2i + G = + 𝑠 * 𝑠 0 +∞
56 54 55 eqtr4i + 𝑒 = + G
57 2 56 resvplusg 0 +∞ V + 𝑒 = + W
58 5 57 ax-mp + 𝑒 = + W
59 ovex 0 +∞ V
60 ax-xrsvsca 𝑒 = 𝑠 *
61 1 60 ressvsca 0 +∞ V 𝑒 = G
62 59 61 ax-mp 𝑒 = G
63 2 62 resvvsca 0 +∞ V 𝑒 = W
64 5 63 ax-mp 𝑒 = W
65 xrge00 0 = 0 𝑠 * 𝑠 0 +∞
66 1 fveq2i 0 G = 0 𝑠 * 𝑠 0 +∞
67 65 66 eqtr4i 0 = 0 G
68 2 67 resv0g 0 +∞ V 0 = 0 W
69 5 68 ax-mp 0 = 0 W
70 df-refld fld = fld 𝑠
71 70 oveq1i fld 𝑠 0 +∞ = fld 𝑠 𝑠 0 +∞
72 reex V
73 ressress V 0 +∞ V fld 𝑠 𝑠 0 +∞ = fld 𝑠 0 +∞
74 72 5 73 mp2an fld 𝑠 𝑠 0 +∞ = fld 𝑠 0 +∞
75 71 74 eqtri fld 𝑠 0 +∞ = fld 𝑠 0 +∞
76 ax-xrssca fld = Scalar 𝑠 *
77 1 76 resssca 0 +∞ V fld = Scalar G
78 59 77 ax-mp fld = Scalar G
79 rebase = Base fld
80 2 78 79 resvsca 0 +∞ V fld 𝑠 0 +∞ = Scalar W
81 5 80 ax-mp fld 𝑠 0 +∞ = Scalar W
82 incom 0 +∞ = 0 +∞
83 df-ss 0 +∞ 0 +∞ = 0 +∞
84 19 83 mpbi 0 +∞ = 0 +∞
85 82 84 eqtr3i 0 +∞ = 0 +∞
86 85 oveq2i fld 𝑠 0 +∞ = fld 𝑠 0 +∞
87 75 81 86 3eqtr3ri fld 𝑠 0 +∞ = Scalar W
88 ax-resscn
89 19 88 sstri 0 +∞
90 eqid fld 𝑠 0 +∞ = fld 𝑠 0 +∞
91 cnfldbas = Base fld
92 90 91 ressbas2 0 +∞ 0 +∞ = Base fld 𝑠 0 +∞
93 89 92 ax-mp 0 +∞ = Base fld 𝑠 0 +∞
94 cnfldadd + = + fld
95 90 94 ressplusg 0 +∞ V + = + fld 𝑠 0 +∞
96 5 95 ax-mp + = + fld 𝑠 0 +∞
97 cnfldmul × = fld
98 90 97 ressmulr 0 +∞ V × = fld 𝑠 0 +∞
99 5 98 ax-mp × = fld 𝑠 0 +∞
100 cndrng fld DivRing
101 drngring fld DivRing fld Ring
102 100 101 ax-mp fld Ring
103 1re 1
104 0le1 0 1
105 ltpnf 1 1 < +∞
106 103 105 ax-mp 1 < +∞
107 103 104 106 3pm3.2i 1 0 1 1 < +∞
108 0re 0
109 pnfxr +∞ *
110 elico2 0 +∞ * 1 0 +∞ 1 0 1 1 < +∞
111 108 109 110 mp2an 1 0 +∞ 1 0 1 1 < +∞
112 107 111 mpbir 1 0 +∞
113 cnfld1 1 = 1 fld
114 90 91 113 ress1r fld Ring 1 0 +∞ 0 +∞ 1 = 1 fld 𝑠 0 +∞
115 102 112 89 114 mp3an 1 = 1 fld 𝑠 0 +∞
116 ringmnd fld Ring fld Mnd
117 100 101 116 mp2b fld Mnd
118 0e0icopnf 0 0 +∞
119 cnfld0 0 = 0 fld
120 90 91 119 ress0g fld Mnd 0 0 +∞ 0 +∞ 0 = 0 fld 𝑠 0 +∞
121 117 118 89 120 mp3an 0 = 0 fld 𝑠 0 +∞
122 53 58 64 69 87 93 96 99 115 121 isslmd W SLMod W CMnd fld 𝑠 0 +∞ SRing q 0 +∞ r 0 +∞ x 0 +∞ w 0 +∞ r 𝑒 w 0 +∞ r 𝑒 w + 𝑒 x = r 𝑒 w + 𝑒 r 𝑒 x q + r 𝑒 w = q 𝑒 w + 𝑒 r 𝑒 w q r 𝑒 w = q 𝑒 r 𝑒 w 1 𝑒 w = w 0 𝑒 w = 0
123 8 9 48 122 mpbir3an W SLMod