Metamath Proof Explorer


Theorem ress1r

Description: 1r is unaffected by restriction. This is a bit more generic than subrg1 . (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypotheses ress1r.s S = R 𝑠 A
ress1r.b B = Base R
ress1r.1 1 ˙ = 1 R
Assertion ress1r R Ring 1 ˙ A A B 1 ˙ = 1 S

Proof

Step Hyp Ref Expression
1 ress1r.s S = R 𝑠 A
2 ress1r.b B = Base R
3 ress1r.1 1 ˙ = 1 R
4 1 2 ressbas2 A B A = Base S
5 4 3ad2ant3 R Ring 1 ˙ A A B A = Base S
6 simp3 R Ring 1 ˙ A A B A B
7 2 fvexi B V
8 ssexg A B B V A V
9 6 7 8 sylancl R Ring 1 ˙ A A B A V
10 eqid R = R
11 1 10 ressmulr A V R = S
12 9 11 syl R Ring 1 ˙ A A B R = S
13 simp2 R Ring 1 ˙ A A B 1 ˙ A
14 simpl1 R Ring 1 ˙ A A B x A R Ring
15 6 sselda R Ring 1 ˙ A A B x A x B
16 2 10 3 ringlidm R Ring x B 1 ˙ R x = x
17 14 15 16 syl2anc R Ring 1 ˙ A A B x A 1 ˙ R x = x
18 2 10 3 ringridm R Ring x B x R 1 ˙ = x
19 14 15 18 syl2anc R Ring 1 ˙ A A B x A x R 1 ˙ = x
20 5 12 13 17 19 rngurd R Ring 1 ˙ A A B 1 ˙ = 1 S