Metamath Proof Explorer


Theorem ringinvval

Description: The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017)

Ref Expression
Hypotheses ringinvval.b B = Base R
ringinvval.p ˙ = R
ringinvval.o 1 ˙ = 1 R
ringinvval.n N = inv r R
ringinvval.u U = Unit R
Assertion ringinvval R Ring X U N X = ι y U | y ˙ X = 1 ˙

Proof

Step Hyp Ref Expression
1 ringinvval.b B = Base R
2 ringinvval.p ˙ = R
3 ringinvval.o 1 ˙ = 1 R
4 ringinvval.n N = inv r R
5 ringinvval.u U = Unit R
6 eqid mulGrp R 𝑠 U = mulGrp R 𝑠 U
7 5 6 unitgrpbas U = Base mulGrp R 𝑠 U
8 5 fvexi U V
9 eqid mulGrp R = mulGrp R
10 9 2 mgpplusg ˙ = + mulGrp R
11 6 10 ressplusg U V ˙ = + mulGrp R 𝑠 U
12 8 11 ax-mp ˙ = + mulGrp R 𝑠 U
13 eqid 0 mulGrp R 𝑠 U = 0 mulGrp R 𝑠 U
14 5 6 4 invrfval N = inv g mulGrp R 𝑠 U
15 7 12 13 14 grpinvval X U N X = ι y U | y ˙ X = 0 mulGrp R 𝑠 U
16 15 adantl R Ring X U N X = ι y U | y ˙ X = 0 mulGrp R 𝑠 U
17 5 6 3 unitgrpid R Ring 1 ˙ = 0 mulGrp R 𝑠 U
18 17 adantr R Ring y U 1 ˙ = 0 mulGrp R 𝑠 U
19 18 eqeq2d R Ring y U y ˙ X = 1 ˙ y ˙ X = 0 mulGrp R 𝑠 U
20 19 riotabidva R Ring ι y U | y ˙ X = 1 ˙ = ι y U | y ˙ X = 0 mulGrp R 𝑠 U
21 20 adantr R Ring X U ι y U | y ˙ X = 1 ˙ = ι y U | y ˙ X = 0 mulGrp R 𝑠 U
22 16 21 eqtr4d R Ring X U N X = ι y U | y ˙ X = 1 ˙