| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringinvval.b |
|- B = ( Base ` R ) |
| 2 |
|
ringinvval.p |
|- .* = ( .r ` R ) |
| 3 |
|
ringinvval.o |
|- .1. = ( 1r ` R ) |
| 4 |
|
ringinvval.n |
|- N = ( invr ` R ) |
| 5 |
|
ringinvval.u |
|- U = ( Unit ` R ) |
| 6 |
|
eqid |
|- ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) |
| 7 |
5 6
|
unitgrpbas |
|- U = ( Base ` ( ( mulGrp ` R ) |`s U ) ) |
| 8 |
5
|
fvexi |
|- U e. _V |
| 9 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 10 |
9 2
|
mgpplusg |
|- .* = ( +g ` ( mulGrp ` R ) ) |
| 11 |
6 10
|
ressplusg |
|- ( U e. _V -> .* = ( +g ` ( ( mulGrp ` R ) |`s U ) ) ) |
| 12 |
8 11
|
ax-mp |
|- .* = ( +g ` ( ( mulGrp ` R ) |`s U ) ) |
| 13 |
|
eqid |
|- ( 0g ` ( ( mulGrp ` R ) |`s U ) ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) |
| 14 |
5 6 4
|
invrfval |
|- N = ( invg ` ( ( mulGrp ` R ) |`s U ) ) |
| 15 |
7 12 13 14
|
grpinvval |
|- ( X e. U -> ( N ` X ) = ( iota_ y e. U ( y .* X ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) ) |
| 16 |
15
|
adantl |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) = ( iota_ y e. U ( y .* X ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) ) |
| 17 |
5 6 3
|
unitgrpid |
|- ( R e. Ring -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
| 18 |
17
|
adantr |
|- ( ( R e. Ring /\ y e. U ) -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
| 19 |
18
|
eqeq2d |
|- ( ( R e. Ring /\ y e. U ) -> ( ( y .* X ) = .1. <-> ( y .* X ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) ) |
| 20 |
19
|
riotabidva |
|- ( R e. Ring -> ( iota_ y e. U ( y .* X ) = .1. ) = ( iota_ y e. U ( y .* X ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) ) |
| 21 |
20
|
adantr |
|- ( ( R e. Ring /\ X e. U ) -> ( iota_ y e. U ( y .* X ) = .1. ) = ( iota_ y e. U ( y .* X ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) ) |
| 22 |
16 21
|
eqtr4d |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) = ( iota_ y e. U ( y .* X ) = .1. ) ) |