Metamath Proof Explorer


Theorem ringinvval

Description: The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017)

Ref Expression
Hypotheses ringinvval.b 𝐵 = ( Base ‘ 𝑅 )
ringinvval.p = ( .r𝑅 )
ringinvval.o 1 = ( 1r𝑅 )
ringinvval.n 𝑁 = ( invr𝑅 )
ringinvval.u 𝑈 = ( Unit ‘ 𝑅 )
Assertion ringinvval ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) = ( 𝑦𝑈 ( 𝑦 𝑋 ) = 1 ) )

Proof

Step Hyp Ref Expression
1 ringinvval.b 𝐵 = ( Base ‘ 𝑅 )
2 ringinvval.p = ( .r𝑅 )
3 ringinvval.o 1 = ( 1r𝑅 )
4 ringinvval.n 𝑁 = ( invr𝑅 )
5 ringinvval.u 𝑈 = ( Unit ‘ 𝑅 )
6 eqid ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 )
7 5 6 unitgrpbas 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) )
8 5 fvexi 𝑈 ∈ V
9 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
10 9 2 mgpplusg = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
11 6 10 ressplusg ( 𝑈 ∈ V → = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) )
12 8 11 ax-mp = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) )
13 eqid ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) )
14 5 6 4 invrfval 𝑁 = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) )
15 7 12 13 14 grpinvval ( 𝑋𝑈 → ( 𝑁𝑋 ) = ( 𝑦𝑈 ( 𝑦 𝑋 ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) )
16 15 adantl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) = ( 𝑦𝑈 ( 𝑦 𝑋 ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) )
17 5 6 3 unitgrpid ( 𝑅 ∈ Ring → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) )
18 17 adantr ( ( 𝑅 ∈ Ring ∧ 𝑦𝑈 ) → 1 = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) )
19 18 eqeq2d ( ( 𝑅 ∈ Ring ∧ 𝑦𝑈 ) → ( ( 𝑦 𝑋 ) = 1 ↔ ( 𝑦 𝑋 ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) )
20 19 riotabidva ( 𝑅 ∈ Ring → ( 𝑦𝑈 ( 𝑦 𝑋 ) = 1 ) = ( 𝑦𝑈 ( 𝑦 𝑋 ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) )
21 20 adantr ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑦𝑈 ( 𝑦 𝑋 ) = 1 ) = ( 𝑦𝑈 ( 𝑦 𝑋 ) = ( 0g ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) ) )
22 16 21 eqtr4d ( ( 𝑅 ∈ Ring ∧ 𝑋𝑈 ) → ( 𝑁𝑋 ) = ( 𝑦𝑈 ( 𝑦 𝑋 ) = 1 ) )