Metamath Proof Explorer


Theorem grpinvval

Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 7-Aug-2013)

Ref Expression
Hypotheses grpinvval.b B = Base G
grpinvval.p + ˙ = + G
grpinvval.o 0 ˙ = 0 G
grpinvval.n N = inv g G
Assertion grpinvval X B N X = ι y B | y + ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 grpinvval.b B = Base G
2 grpinvval.p + ˙ = + G
3 grpinvval.o 0 ˙ = 0 G
4 grpinvval.n N = inv g G
5 oveq2 x = X y + ˙ x = y + ˙ X
6 5 eqeq1d x = X y + ˙ x = 0 ˙ y + ˙ X = 0 ˙
7 6 riotabidv x = X ι y B | y + ˙ x = 0 ˙ = ι y B | y + ˙ X = 0 ˙
8 1 2 3 4 grpinvfval N = x B ι y B | y + ˙ x = 0 ˙
9 riotaex ι y B | y + ˙ X = 0 ˙ V
10 7 8 9 fvmpt X B N X = ι y B | y + ˙ X = 0 ˙