Metamath Proof Explorer


Theorem ress1r

Description: 1r is unaffected by restriction. This is a bit more generic than subrg1 . (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypotheses ress1r.s 𝑆 = ( 𝑅s 𝐴 )
ress1r.b 𝐵 = ( Base ‘ 𝑅 )
ress1r.1 1 = ( 1r𝑅 )
Assertion ress1r ( ( 𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵 ) → 1 = ( 1r𝑆 ) )

Proof

Step Hyp Ref Expression
1 ress1r.s 𝑆 = ( 𝑅s 𝐴 )
2 ress1r.b 𝐵 = ( Base ‘ 𝑅 )
3 ress1r.1 1 = ( 1r𝑅 )
4 1 2 ressbas2 ( 𝐴𝐵𝐴 = ( Base ‘ 𝑆 ) )
5 4 3ad2ant3 ( ( 𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵 ) → 𝐴 = ( Base ‘ 𝑆 ) )
6 simp3 ( ( 𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵 ) → 𝐴𝐵 )
7 2 fvexi 𝐵 ∈ V
8 ssexg ( ( 𝐴𝐵𝐵 ∈ V ) → 𝐴 ∈ V )
9 6 7 8 sylancl ( ( 𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵 ) → 𝐴 ∈ V )
10 eqid ( .r𝑅 ) = ( .r𝑅 )
11 1 10 ressmulr ( 𝐴 ∈ V → ( .r𝑅 ) = ( .r𝑆 ) )
12 9 11 syl ( ( 𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵 ) → ( .r𝑅 ) = ( .r𝑆 ) )
13 simp2 ( ( 𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵 ) → 1𝐴 )
14 simpl1 ( ( ( 𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵 ) ∧ 𝑥𝐴 ) → 𝑅 ∈ Ring )
15 6 sselda ( ( ( 𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵 ) ∧ 𝑥𝐴 ) → 𝑥𝐵 )
16 2 10 3 ringlidm ( ( 𝑅 ∈ Ring ∧ 𝑥𝐵 ) → ( 1 ( .r𝑅 ) 𝑥 ) = 𝑥 )
17 14 15 16 syl2anc ( ( ( 𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵 ) ∧ 𝑥𝐴 ) → ( 1 ( .r𝑅 ) 𝑥 ) = 𝑥 )
18 2 10 3 ringridm ( ( 𝑅 ∈ Ring ∧ 𝑥𝐵 ) → ( 𝑥 ( .r𝑅 ) 1 ) = 𝑥 )
19 14 15 18 syl2anc ( ( ( 𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵 ) ∧ 𝑥𝐴 ) → ( 𝑥 ( .r𝑅 ) 1 ) = 𝑥 )
20 5 12 13 17 19 rngurd ( ( 𝑅 ∈ Ring ∧ 1𝐴𝐴𝐵 ) → 1 = ( 1r𝑆 ) )