Metamath Proof Explorer


Theorem xrge00

Description: The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Assertion xrge00 0=0𝑠*𝑠0+∞

Proof

Step Hyp Ref Expression
1 eqid 𝑠*𝑠*−∞=𝑠*𝑠*−∞
2 1 xrs1mnd 𝑠*𝑠*−∞Mnd
3 xrge0cmn 𝑠*𝑠0+∞CMnd
4 cmnmnd 𝑠*𝑠0+∞CMnd𝑠*𝑠0+∞Mnd
5 3 4 ax-mp 𝑠*𝑠0+∞Mnd
6 mnflt0 −∞<0
7 mnfxr −∞*
8 0xr 0*
9 xrltnle −∞*0*−∞<0¬0−∞
10 7 8 9 mp2an −∞<0¬0−∞
11 6 10 mpbi ¬0−∞
12 11 intnan ¬−∞*0−∞
13 elxrge0 −∞0+∞−∞*0−∞
14 12 13 mtbir ¬−∞0+∞
15 difsn ¬−∞0+∞0+∞−∞=0+∞
16 14 15 ax-mp 0+∞−∞=0+∞
17 iccssxr 0+∞*
18 ssdif 0+∞*0+∞−∞*−∞
19 17 18 ax-mp 0+∞−∞*−∞
20 16 19 eqsstrri 0+∞*−∞
21 0e0iccpnf 00+∞
22 difss *−∞*
23 df-ss *−∞**−∞*=*−∞
24 22 23 mpbi *−∞*=*−∞
25 xrex *V
26 difexg *V*−∞V
27 25 26 ax-mp *−∞V
28 xrsbas *=Base𝑠*
29 1 28 ressbas *−∞V*−∞*=Base𝑠*𝑠*−∞
30 27 29 ax-mp *−∞*=Base𝑠*𝑠*−∞
31 24 30 eqtr3i *−∞=Base𝑠*𝑠*−∞
32 1 xrs10 0=0𝑠*𝑠*−∞
33 ovex 0+∞V
34 ressress *−∞V0+∞V𝑠*𝑠*−∞𝑠0+∞=𝑠*𝑠*−∞0+∞
35 27 33 34 mp2an 𝑠*𝑠*−∞𝑠0+∞=𝑠*𝑠*−∞0+∞
36 dfss 0+∞*−∞0+∞=0+∞*−∞
37 20 36 mpbi 0+∞=0+∞*−∞
38 incom 0+∞*−∞=*−∞0+∞
39 37 38 eqtr2i *−∞0+∞=0+∞
40 39 oveq2i 𝑠*𝑠*−∞0+∞=𝑠*𝑠0+∞
41 35 40 eqtr2i 𝑠*𝑠0+∞=𝑠*𝑠*−∞𝑠0+∞
42 31 32 41 submnd0 𝑠*𝑠*−∞Mnd𝑠*𝑠0+∞Mnd0+∞*−∞00+∞0=0𝑠*𝑠0+∞
43 2 5 20 21 42 mp4an 0=0𝑠*𝑠0+∞