Metamath Proof Explorer


Theorem xrge0adddi

Description: Left-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Assertion xrge0adddi A0+∞B0+∞C0+∞C𝑒A+𝑒B=C𝑒A+𝑒C𝑒B

Proof

Step Hyp Ref Expression
1 xrge0adddir A0+∞B0+∞C0+∞A+𝑒B𝑒C=A𝑒C+𝑒B𝑒C
2 iccssxr 0+∞*
3 simp1 A0+∞B0+∞C0+∞A0+∞
4 2 3 sselid A0+∞B0+∞C0+∞A*
5 simp2 A0+∞B0+∞C0+∞B0+∞
6 2 5 sselid A0+∞B0+∞C0+∞B*
7 4 6 xaddcld A0+∞B0+∞C0+∞A+𝑒B*
8 simp3 A0+∞B0+∞C0+∞C0+∞
9 2 8 sselid A0+∞B0+∞C0+∞C*
10 xmulcom A+𝑒B*C*A+𝑒B𝑒C=C𝑒A+𝑒B
11 7 9 10 syl2anc A0+∞B0+∞C0+∞A+𝑒B𝑒C=C𝑒A+𝑒B
12 xmulcom A*C*A𝑒C=C𝑒A
13 4 9 12 syl2anc A0+∞B0+∞C0+∞A𝑒C=C𝑒A
14 xmulcom B*C*B𝑒C=C𝑒B
15 6 9 14 syl2anc A0+∞B0+∞C0+∞B𝑒C=C𝑒B
16 13 15 oveq12d A0+∞B0+∞C0+∞A𝑒C+𝑒B𝑒C=C𝑒A+𝑒C𝑒B
17 1 11 16 3eqtr3d A0+∞B0+∞C0+∞C𝑒A+𝑒B=C𝑒A+𝑒C𝑒B