Metamath Proof Explorer


Theorem xrge0adddi

Description: Left-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Assertion xrge0adddi A 0 +∞ B 0 +∞ C 0 +∞ C 𝑒 A + 𝑒 B = C 𝑒 A + 𝑒 C 𝑒 B

Proof

Step Hyp Ref Expression
1 xrge0adddir A 0 +∞ B 0 +∞ C 0 +∞ A + 𝑒 B 𝑒 C = A 𝑒 C + 𝑒 B 𝑒 C
2 iccssxr 0 +∞ *
3 simp1 A 0 +∞ B 0 +∞ C 0 +∞ A 0 +∞
4 2 3 sselid A 0 +∞ B 0 +∞ C 0 +∞ A *
5 simp2 A 0 +∞ B 0 +∞ C 0 +∞ B 0 +∞
6 2 5 sselid A 0 +∞ B 0 +∞ C 0 +∞ B *
7 4 6 xaddcld A 0 +∞ B 0 +∞ C 0 +∞ A + 𝑒 B *
8 simp3 A 0 +∞ B 0 +∞ C 0 +∞ C 0 +∞
9 2 8 sselid A 0 +∞ B 0 +∞ C 0 +∞ C *
10 xmulcom A + 𝑒 B * C * A + 𝑒 B 𝑒 C = C 𝑒 A + 𝑒 B
11 7 9 10 syl2anc A 0 +∞ B 0 +∞ C 0 +∞ A + 𝑒 B 𝑒 C = C 𝑒 A + 𝑒 B
12 xmulcom A * C * A 𝑒 C = C 𝑒 A
13 4 9 12 syl2anc A 0 +∞ B 0 +∞ C 0 +∞ A 𝑒 C = C 𝑒 A
14 xmulcom B * C * B 𝑒 C = C 𝑒 B
15 6 9 14 syl2anc A 0 +∞ B 0 +∞ C 0 +∞ B 𝑒 C = C 𝑒 B
16 13 15 oveq12d A 0 +∞ B 0 +∞ C 0 +∞ A 𝑒 C + 𝑒 B 𝑒 C = C 𝑒 A + 𝑒 C 𝑒 B
17 1 11 16 3eqtr3d A 0 +∞ B 0 +∞ C 0 +∞ C 𝑒 A + 𝑒 B = C 𝑒 A + 𝑒 C 𝑒 B