Step |
Hyp |
Ref |
Expression |
1 |
|
iccssxr |
|
2 |
|
simpl1 |
|
3 |
1 2
|
sselid |
|
4 |
|
simpl2 |
|
5 |
1 4
|
sselid |
|
6 |
|
rge0ssre |
|
7 |
|
simpr |
|
8 |
6 7
|
sselid |
|
9 |
|
xadddir |
|
10 |
3 5 8 9
|
syl3anc |
|
11 |
|
simpll1 |
|
12 |
1 11
|
sselid |
|
13 |
|
simpll2 |
|
14 |
1 13
|
sselid |
|
15 |
12 14
|
xaddcld |
|
16 |
|
simpr |
|
17 |
|
xrge0addgt0 |
|
18 |
11 13 16 17
|
syl21anc |
|
19 |
|
xmulpnf1 |
|
20 |
15 18 19
|
syl2anc |
|
21 |
|
oveq2 |
|
22 |
21
|
ad2antlr |
|
23 |
|
simpll3 |
|
24 |
|
ge0xmulcl |
|
25 |
13 23 24
|
syl2anc |
|
26 |
1 25
|
sselid |
|
27 |
|
xrge0neqmnf |
|
28 |
25 27
|
syl |
|
29 |
|
xaddpnf2 |
|
30 |
26 28 29
|
syl2anc |
|
31 |
20 22 30
|
3eqtr4d |
|
32 |
|
oveq2 |
|
33 |
32
|
ad2antlr |
|
34 |
|
xmulpnf1 |
|
35 |
12 16 34
|
syl2anc |
|
36 |
33 35
|
eqtrd |
|
37 |
36
|
oveq1d |
|
38 |
31 37
|
eqtr4d |
|
39 |
|
simpll3 |
|
40 |
1 39
|
sselid |
|
41 |
|
xmul02 |
|
42 |
40 41
|
syl |
|
43 |
42
|
oveq1d |
|
44 |
|
oveq1 |
|
45 |
44
|
adantl |
|
46 |
45
|
oveq1d |
|
47 |
|
simpll2 |
|
48 |
1 47
|
sselid |
|
49 |
48 40
|
xmulcld |
|
50 |
|
xaddid2 |
|
51 |
49 50
|
syl |
|
52 |
43 46 51
|
3eqtr3d |
|
53 |
|
xaddid2 |
|
54 |
48 53
|
syl |
|
55 |
54
|
oveq1d |
|
56 |
|
oveq1 |
|
57 |
56
|
oveq1d |
|
58 |
57
|
adantl |
|
59 |
52 55 58
|
3eqtr2rd |
|
60 |
|
0xr |
|
61 |
60
|
a1i |
|
62 |
|
simpl1 |
|
63 |
1 62
|
sselid |
|
64 |
|
pnfxr |
|
65 |
64
|
a1i |
|
66 |
|
iccgelb |
|
67 |
61 65 62 66
|
syl3anc |
|
68 |
|
xrleloe |
|
69 |
68
|
biimpa |
|
70 |
61 63 67 69
|
syl21anc |
|
71 |
38 59 70
|
mpjaodan |
|
72 |
|
0lepnf |
|
73 |
|
eliccelico |
|
74 |
60 64 72 73
|
mp3an |
|
75 |
74
|
3anbi3i |
|
76 |
75
|
simp3bi |
|
77 |
10 71 76
|
mpjaodan |
|