Metamath Proof Explorer


Theorem xaddcld

Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses xnegcld.1 φA*
xaddcld.2 φB*
Assertion xaddcld φA+𝑒B*

Proof

Step Hyp Ref Expression
1 xnegcld.1 φA*
2 xaddcld.2 φB*
3 xaddcl A*B*A+𝑒B*
4 1 2 3 syl2anc φA+𝑒B*