Metamath Proof Explorer


Theorem xmulcld

Description: Closure of extended real multiplication. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses xnegcld.1 φA*
xaddcld.2 φB*
Assertion xmulcld φA𝑒B*

Proof

Step Hyp Ref Expression
1 xnegcld.1 φA*
2 xaddcld.2 φB*
3 xmulcl A*B*A𝑒B*
4 1 2 3 syl2anc φA𝑒B*