Metamath Proof Explorer


Theorem xmulcl

Description: Closure of extended real multiplication. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulcl A*B*A𝑒B*

Proof

Step Hyp Ref Expression
1 xmulf 𝑒:*×**
2 1 fovcl A*B*A𝑒B*