Metamath Proof Explorer


Theorem xmulf

Description: The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xmulf 𝑒 : * × * *

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 1 a1i x * y * x = 0 y = 0 0 *
3 pnfxr +∞ *
4 3 a1i x * y * ¬ x = 0 y = 0 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ +∞ *
5 mnfxr −∞ *
6 5 a1i x * y * ¬ x = 0 y = 0 ¬ 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ *
7 xmullem x * y * ¬ x = 0 y = 0 ¬ 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ ¬ 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ x
8 ancom x * y * y * x *
9 orcom x = 0 y = 0 y = 0 x = 0
10 9 notbii ¬ x = 0 y = 0 ¬ y = 0 x = 0
11 8 10 anbi12i x * y * ¬ x = 0 y = 0 y * x * ¬ y = 0 x = 0
12 orcom 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ 0 < x y = +∞ x < 0 y = −∞ 0 < y x = +∞ y < 0 x = −∞
13 12 notbii ¬ 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ ¬ 0 < x y = +∞ x < 0 y = −∞ 0 < y x = +∞ y < 0 x = −∞
14 11 13 anbi12i x * y * ¬ x = 0 y = 0 ¬ 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ y * x * ¬ y = 0 x = 0 ¬ 0 < x y = +∞ x < 0 y = −∞ 0 < y x = +∞ y < 0 x = −∞
15 orcom 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ 0 < x y = −∞ x < 0 y = +∞ 0 < y x = −∞ y < 0 x = +∞
16 15 notbii ¬ 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ ¬ 0 < x y = −∞ x < 0 y = +∞ 0 < y x = −∞ y < 0 x = +∞
17 xmullem y * x * ¬ y = 0 x = 0 ¬ 0 < x y = +∞ x < 0 y = −∞ 0 < y x = +∞ y < 0 x = −∞ ¬ 0 < x y = −∞ x < 0 y = +∞ 0 < y x = −∞ y < 0 x = +∞ y
18 14 16 17 syl2anb x * y * ¬ x = 0 y = 0 ¬ 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ ¬ 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ y
19 7 18 remulcld x * y * ¬ x = 0 y = 0 ¬ 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ ¬ 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ x y
20 19 rexrd x * y * ¬ x = 0 y = 0 ¬ 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ ¬ 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ x y *
21 6 20 ifclda x * y * ¬ x = 0 y = 0 ¬ 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y *
22 4 21 ifclda x * y * ¬ x = 0 y = 0 if 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ +∞ if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y *
23 2 22 ifclda x * y * if x = 0 y = 0 0 if 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ +∞ if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y *
24 23 rgen2 x * y * if x = 0 y = 0 0 if 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ +∞ if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y *
25 df-xmul 𝑒 = x * , y * if x = 0 y = 0 0 if 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ +∞ if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y
26 25 fmpo x * y * if x = 0 y = 0 0 if 0 < y x = +∞ y < 0 x = −∞ 0 < x y = +∞ x < 0 y = −∞ +∞ if 0 < y x = −∞ y < 0 x = +∞ 0 < x y = −∞ x < 0 y = +∞ −∞ x y * 𝑒 : * × * *
27 24 26 mpbi 𝑒 : * × * *