Step |
Hyp |
Ref |
Expression |
1 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
2 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
3 |
1 2
|
sselid |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐴 ∈ ℝ* ) |
4 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
5 |
1 4
|
sselid |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐵 ∈ ℝ* ) |
6 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
7 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐶 ∈ ( 0 [,) +∞ ) ) |
8 |
6 7
|
sselid |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐶 ∈ ℝ ) |
9 |
|
xadddir |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
10 |
3 5 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
11 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
12 |
1 11
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ* ) |
13 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
14 |
1 13
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 𝐵 ∈ ℝ* ) |
15 |
12 14
|
xaddcld |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ) |
16 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
17 |
|
xrge0addgt0 |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) → 0 < ( 𝐴 +𝑒 𝐵 ) ) |
18 |
11 13 16 17
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 0 < ( 𝐴 +𝑒 𝐵 ) ) |
19 |
|
xmulpnf1 |
⊢ ( ( ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ∧ 0 < ( 𝐴 +𝑒 𝐵 ) ) → ( ( 𝐴 +𝑒 𝐵 ) ·e +∞ ) = +∞ ) |
20 |
15 18 19
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( ( 𝐴 +𝑒 𝐵 ) ·e +∞ ) = +∞ ) |
21 |
|
oveq2 |
⊢ ( 𝐶 = +∞ → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 +𝑒 𝐵 ) ·e +∞ ) ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 +𝑒 𝐵 ) ·e +∞ ) ) |
23 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
24 |
|
ge0xmulcl |
⊢ ( ( 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐵 ·e 𝐶 ) ∈ ( 0 [,] +∞ ) ) |
25 |
13 23 24
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐵 ·e 𝐶 ) ∈ ( 0 [,] +∞ ) ) |
26 |
1 25
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
27 |
|
xrge0neqmnf |
⊢ ( ( 𝐵 ·e 𝐶 ) ∈ ( 0 [,] +∞ ) → ( 𝐵 ·e 𝐶 ) ≠ -∞ ) |
28 |
25 27
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐵 ·e 𝐶 ) ≠ -∞ ) |
29 |
|
xaddpnf2 |
⊢ ( ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ≠ -∞ ) → ( +∞ +𝑒 ( 𝐵 ·e 𝐶 ) ) = +∞ ) |
30 |
26 28 29
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( +∞ +𝑒 ( 𝐵 ·e 𝐶 ) ) = +∞ ) |
31 |
20 22 30
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( +∞ +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
32 |
|
oveq2 |
⊢ ( 𝐶 = +∞ → ( 𝐴 ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) |
33 |
32
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐴 ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) |
34 |
|
xmulpnf1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |
35 |
12 16 34
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |
36 |
33 35
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐴 ·e 𝐶 ) = +∞ ) |
37 |
36
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( +∞ +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
38 |
31 37
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
39 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
40 |
1 39
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → 𝐶 ∈ ℝ* ) |
41 |
|
xmul02 |
⊢ ( 𝐶 ∈ ℝ* → ( 0 ·e 𝐶 ) = 0 ) |
42 |
40 41
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( 0 ·e 𝐶 ) = 0 ) |
43 |
42
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 0 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( 0 +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
44 |
|
oveq1 |
⊢ ( 0 = 𝐴 → ( 0 ·e 𝐶 ) = ( 𝐴 ·e 𝐶 ) ) |
45 |
44
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( 0 ·e 𝐶 ) = ( 𝐴 ·e 𝐶 ) ) |
46 |
45
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 0 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
47 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
48 |
1 47
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → 𝐵 ∈ ℝ* ) |
49 |
48 40
|
xmulcld |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
50 |
|
xaddid2 |
⊢ ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* → ( 0 +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( 𝐵 ·e 𝐶 ) ) |
51 |
49 50
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( 0 +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( 𝐵 ·e 𝐶 ) ) |
52 |
43 46 51
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( 𝐵 ·e 𝐶 ) ) |
53 |
|
xaddid2 |
⊢ ( 𝐵 ∈ ℝ* → ( 0 +𝑒 𝐵 ) = 𝐵 ) |
54 |
48 53
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( 0 +𝑒 𝐵 ) = 𝐵 ) |
55 |
54
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 0 +𝑒 𝐵 ) ·e 𝐶 ) = ( 𝐵 ·e 𝐶 ) ) |
56 |
|
oveq1 |
⊢ ( 0 = 𝐴 → ( 0 +𝑒 𝐵 ) = ( 𝐴 +𝑒 𝐵 ) ) |
57 |
56
|
oveq1d |
⊢ ( 0 = 𝐴 → ( ( 0 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) ) |
58 |
57
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 0 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) ) |
59 |
52 55 58
|
3eqtr2rd |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
60 |
|
0xr |
⊢ 0 ∈ ℝ* |
61 |
60
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → 0 ∈ ℝ* ) |
62 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
63 |
1 62
|
sselid |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → 𝐴 ∈ ℝ* ) |
64 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
65 |
64
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → +∞ ∈ ℝ* ) |
66 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐴 ) |
67 |
61 65 62 66
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → 0 ≤ 𝐴 ) |
68 |
|
xrleloe |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
69 |
68
|
biimpa |
⊢ ( ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ 0 ≤ 𝐴 ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
70 |
61 63 67 69
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
71 |
38 59 70
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
72 |
|
0lepnf |
⊢ 0 ≤ +∞ |
73 |
|
eliccelico |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( 𝐶 ∈ ( 0 [,) +∞ ) ∨ 𝐶 = +∞ ) ) ) |
74 |
60 64 72 73
|
mp3an |
⊢ ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( 𝐶 ∈ ( 0 [,) +∞ ) ∨ 𝐶 = +∞ ) ) |
75 |
74
|
3anbi3i |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ↔ ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ ( 𝐶 ∈ ( 0 [,) +∞ ) ∨ 𝐶 = +∞ ) ) ) |
76 |
75
|
simp3bi |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐶 ∈ ( 0 [,) +∞ ) ∨ 𝐶 = +∞ ) ) |
77 |
10 71 76
|
mpjaodan |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |