| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 2 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 3 |
1 2
|
sselid |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐴 ∈ ℝ* ) |
| 4 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 5 |
1 4
|
sselid |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐵 ∈ ℝ* ) |
| 6 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 7 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 8 |
6 7
|
sselid |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → 𝐶 ∈ ℝ ) |
| 9 |
|
xadddir |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 10 |
3 5 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 ∈ ( 0 [,) +∞ ) ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 11 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 12 |
1 11
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 13 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 14 |
1 13
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 15 |
12 14
|
xaddcld |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ) |
| 16 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
| 17 |
|
xrge0addgt0 |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝐴 ) → 0 < ( 𝐴 +𝑒 𝐵 ) ) |
| 18 |
11 13 16 17
|
syl21anc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 0 < ( 𝐴 +𝑒 𝐵 ) ) |
| 19 |
|
xmulpnf1 |
⊢ ( ( ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ∧ 0 < ( 𝐴 +𝑒 𝐵 ) ) → ( ( 𝐴 +𝑒 𝐵 ) ·e +∞ ) = +∞ ) |
| 20 |
15 18 19
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( ( 𝐴 +𝑒 𝐵 ) ·e +∞ ) = +∞ ) |
| 21 |
|
oveq2 |
⊢ ( 𝐶 = +∞ → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 +𝑒 𝐵 ) ·e +∞ ) ) |
| 22 |
21
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 +𝑒 𝐵 ) ·e +∞ ) ) |
| 23 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 24 |
|
ge0xmulcl |
⊢ ( ( 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐵 ·e 𝐶 ) ∈ ( 0 [,] +∞ ) ) |
| 25 |
13 23 24
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐵 ·e 𝐶 ) ∈ ( 0 [,] +∞ ) ) |
| 26 |
1 25
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 27 |
|
xrge0neqmnf |
⊢ ( ( 𝐵 ·e 𝐶 ) ∈ ( 0 [,] +∞ ) → ( 𝐵 ·e 𝐶 ) ≠ -∞ ) |
| 28 |
25 27
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐵 ·e 𝐶 ) ≠ -∞ ) |
| 29 |
|
xaddpnf2 |
⊢ ( ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ≠ -∞ ) → ( +∞ +𝑒 ( 𝐵 ·e 𝐶 ) ) = +∞ ) |
| 30 |
26 28 29
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( +∞ +𝑒 ( 𝐵 ·e 𝐶 ) ) = +∞ ) |
| 31 |
20 22 30
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( +∞ +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 32 |
|
oveq2 |
⊢ ( 𝐶 = +∞ → ( 𝐴 ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) |
| 33 |
32
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐴 ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) |
| 34 |
|
xmulpnf1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |
| 35 |
12 16 34
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |
| 36 |
33 35
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( 𝐴 ·e 𝐶 ) = +∞ ) |
| 37 |
36
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( +∞ +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 38 |
31 37
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 < 𝐴 ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 39 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 40 |
1 39
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → 𝐶 ∈ ℝ* ) |
| 41 |
|
xmul02 |
⊢ ( 𝐶 ∈ ℝ* → ( 0 ·e 𝐶 ) = 0 ) |
| 42 |
40 41
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( 0 ·e 𝐶 ) = 0 ) |
| 43 |
42
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 0 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( 0 +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 44 |
|
oveq1 |
⊢ ( 0 = 𝐴 → ( 0 ·e 𝐶 ) = ( 𝐴 ·e 𝐶 ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( 0 ·e 𝐶 ) = ( 𝐴 ·e 𝐶 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 0 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 47 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 48 |
1 47
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 49 |
48 40
|
xmulcld |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 50 |
|
xaddlid |
⊢ ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* → ( 0 +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( 𝐵 ·e 𝐶 ) ) |
| 51 |
49 50
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( 0 +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( 𝐵 ·e 𝐶 ) ) |
| 52 |
43 46 51
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( 𝐵 ·e 𝐶 ) ) |
| 53 |
|
xaddlid |
⊢ ( 𝐵 ∈ ℝ* → ( 0 +𝑒 𝐵 ) = 𝐵 ) |
| 54 |
48 53
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( 0 +𝑒 𝐵 ) = 𝐵 ) |
| 55 |
54
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 0 +𝑒 𝐵 ) ·e 𝐶 ) = ( 𝐵 ·e 𝐶 ) ) |
| 56 |
|
oveq1 |
⊢ ( 0 = 𝐴 → ( 0 +𝑒 𝐵 ) = ( 𝐴 +𝑒 𝐵 ) ) |
| 57 |
56
|
oveq1d |
⊢ ( 0 = 𝐴 → ( ( 0 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) ) |
| 58 |
57
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 0 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) ) |
| 59 |
52 55 58
|
3eqtr2rd |
⊢ ( ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) ∧ 0 = 𝐴 ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 60 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 61 |
60
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → 0 ∈ ℝ* ) |
| 62 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 63 |
1 62
|
sselid |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → 𝐴 ∈ ℝ* ) |
| 64 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 65 |
64
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → +∞ ∈ ℝ* ) |
| 66 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐴 ) |
| 67 |
61 65 62 66
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → 0 ≤ 𝐴 ) |
| 68 |
|
xrleloe |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
| 69 |
68
|
biimpa |
⊢ ( ( ( 0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ 0 ≤ 𝐴 ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 70 |
61 63 67 69
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) |
| 71 |
38 59 70
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 72 |
|
0lepnf |
⊢ 0 ≤ +∞ |
| 73 |
|
eliccelico |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( 𝐶 ∈ ( 0 [,) +∞ ) ∨ 𝐶 = +∞ ) ) ) |
| 74 |
60 64 72 73
|
mp3an |
⊢ ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( 𝐶 ∈ ( 0 [,) +∞ ) ∨ 𝐶 = +∞ ) ) |
| 75 |
74
|
3anbi3i |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) ↔ ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ ( 𝐶 ∈ ( 0 [,) +∞ ) ∨ 𝐶 = +∞ ) ) ) |
| 76 |
75
|
simp3bi |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐶 ∈ ( 0 [,) +∞ ) ∨ 𝐶 = +∞ ) ) |
| 77 |
10 71 76
|
mpjaodan |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |