| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0adddir |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 2 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 3 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 4 |
2 3
|
sselid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐴 ∈ ℝ* ) |
| 5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 6 |
2 5
|
sselid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ℝ* ) |
| 7 |
4 6
|
xaddcld |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ) |
| 8 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 9 |
2 8
|
sselid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ℝ* ) |
| 10 |
|
xmulcom |
⊢ ( ( ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( 𝐶 ·e ( 𝐴 +𝑒 𝐵 ) ) ) |
| 11 |
7 9 10
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( ( 𝐴 +𝑒 𝐵 ) ·e 𝐶 ) = ( 𝐶 ·e ( 𝐴 +𝑒 𝐵 ) ) ) |
| 12 |
|
xmulcom |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) |
| 13 |
4 9 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) |
| 14 |
|
xmulcom |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) |
| 15 |
6 9 14
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) |
| 16 |
13 15
|
oveq12d |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( ( 𝐴 ·e 𝐶 ) +𝑒 ( 𝐵 ·e 𝐶 ) ) = ( ( 𝐶 ·e 𝐴 ) +𝑒 ( 𝐶 ·e 𝐵 ) ) ) |
| 17 |
1 11 16
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐶 ·e ( 𝐴 +𝑒 𝐵 ) ) = ( ( 𝐶 ·e 𝐴 ) +𝑒 ( 𝐶 ·e 𝐵 ) ) ) |