Step |
Hyp |
Ref |
Expression |
1 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
2 |
|
simpl1 |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C e. ( 0 [,) +oo ) ) -> A e. ( 0 [,] +oo ) ) |
3 |
1 2
|
sselid |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C e. ( 0 [,) +oo ) ) -> A e. RR* ) |
4 |
|
simpl2 |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C e. ( 0 [,) +oo ) ) -> B e. ( 0 [,] +oo ) ) |
5 |
1 4
|
sselid |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C e. ( 0 [,) +oo ) ) -> B e. RR* ) |
6 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
7 |
|
simpr |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C e. ( 0 [,) +oo ) ) -> C e. ( 0 [,) +oo ) ) |
8 |
6 7
|
sselid |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C e. ( 0 [,) +oo ) ) -> C e. RR ) |
9 |
|
xadddir |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( ( A +e B ) *e C ) = ( ( A *e C ) +e ( B *e C ) ) ) |
10 |
3 5 8 9
|
syl3anc |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C e. ( 0 [,) +oo ) ) -> ( ( A +e B ) *e C ) = ( ( A *e C ) +e ( B *e C ) ) ) |
11 |
|
simpll1 |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> A e. ( 0 [,] +oo ) ) |
12 |
1 11
|
sselid |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> A e. RR* ) |
13 |
|
simpll2 |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> B e. ( 0 [,] +oo ) ) |
14 |
1 13
|
sselid |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> B e. RR* ) |
15 |
12 14
|
xaddcld |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( A +e B ) e. RR* ) |
16 |
|
simpr |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> 0 < A ) |
17 |
|
xrge0addgt0 |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) ) /\ 0 < A ) -> 0 < ( A +e B ) ) |
18 |
11 13 16 17
|
syl21anc |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> 0 < ( A +e B ) ) |
19 |
|
xmulpnf1 |
|- ( ( ( A +e B ) e. RR* /\ 0 < ( A +e B ) ) -> ( ( A +e B ) *e +oo ) = +oo ) |
20 |
15 18 19
|
syl2anc |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( ( A +e B ) *e +oo ) = +oo ) |
21 |
|
oveq2 |
|- ( C = +oo -> ( ( A +e B ) *e C ) = ( ( A +e B ) *e +oo ) ) |
22 |
21
|
ad2antlr |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( ( A +e B ) *e C ) = ( ( A +e B ) *e +oo ) ) |
23 |
|
simpll3 |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> C e. ( 0 [,] +oo ) ) |
24 |
|
ge0xmulcl |
|- ( ( B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( B *e C ) e. ( 0 [,] +oo ) ) |
25 |
13 23 24
|
syl2anc |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( B *e C ) e. ( 0 [,] +oo ) ) |
26 |
1 25
|
sselid |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( B *e C ) e. RR* ) |
27 |
|
xrge0neqmnf |
|- ( ( B *e C ) e. ( 0 [,] +oo ) -> ( B *e C ) =/= -oo ) |
28 |
25 27
|
syl |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( B *e C ) =/= -oo ) |
29 |
|
xaddpnf2 |
|- ( ( ( B *e C ) e. RR* /\ ( B *e C ) =/= -oo ) -> ( +oo +e ( B *e C ) ) = +oo ) |
30 |
26 28 29
|
syl2anc |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( +oo +e ( B *e C ) ) = +oo ) |
31 |
20 22 30
|
3eqtr4d |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( ( A +e B ) *e C ) = ( +oo +e ( B *e C ) ) ) |
32 |
|
oveq2 |
|- ( C = +oo -> ( A *e C ) = ( A *e +oo ) ) |
33 |
32
|
ad2antlr |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( A *e C ) = ( A *e +oo ) ) |
34 |
|
xmulpnf1 |
|- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
35 |
12 16 34
|
syl2anc |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
36 |
33 35
|
eqtrd |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( A *e C ) = +oo ) |
37 |
36
|
oveq1d |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( ( A *e C ) +e ( B *e C ) ) = ( +oo +e ( B *e C ) ) ) |
38 |
31 37
|
eqtr4d |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 < A ) -> ( ( A +e B ) *e C ) = ( ( A *e C ) +e ( B *e C ) ) ) |
39 |
|
simpll3 |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> C e. ( 0 [,] +oo ) ) |
40 |
1 39
|
sselid |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> C e. RR* ) |
41 |
|
xmul02 |
|- ( C e. RR* -> ( 0 *e C ) = 0 ) |
42 |
40 41
|
syl |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> ( 0 *e C ) = 0 ) |
43 |
42
|
oveq1d |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> ( ( 0 *e C ) +e ( B *e C ) ) = ( 0 +e ( B *e C ) ) ) |
44 |
|
oveq1 |
|- ( 0 = A -> ( 0 *e C ) = ( A *e C ) ) |
45 |
44
|
adantl |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> ( 0 *e C ) = ( A *e C ) ) |
46 |
45
|
oveq1d |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> ( ( 0 *e C ) +e ( B *e C ) ) = ( ( A *e C ) +e ( B *e C ) ) ) |
47 |
|
simpll2 |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> B e. ( 0 [,] +oo ) ) |
48 |
1 47
|
sselid |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> B e. RR* ) |
49 |
48 40
|
xmulcld |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> ( B *e C ) e. RR* ) |
50 |
|
xaddid2 |
|- ( ( B *e C ) e. RR* -> ( 0 +e ( B *e C ) ) = ( B *e C ) ) |
51 |
49 50
|
syl |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> ( 0 +e ( B *e C ) ) = ( B *e C ) ) |
52 |
43 46 51
|
3eqtr3d |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> ( ( A *e C ) +e ( B *e C ) ) = ( B *e C ) ) |
53 |
|
xaddid2 |
|- ( B e. RR* -> ( 0 +e B ) = B ) |
54 |
48 53
|
syl |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> ( 0 +e B ) = B ) |
55 |
54
|
oveq1d |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> ( ( 0 +e B ) *e C ) = ( B *e C ) ) |
56 |
|
oveq1 |
|- ( 0 = A -> ( 0 +e B ) = ( A +e B ) ) |
57 |
56
|
oveq1d |
|- ( 0 = A -> ( ( 0 +e B ) *e C ) = ( ( A +e B ) *e C ) ) |
58 |
57
|
adantl |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> ( ( 0 +e B ) *e C ) = ( ( A +e B ) *e C ) ) |
59 |
52 55 58
|
3eqtr2rd |
|- ( ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) /\ 0 = A ) -> ( ( A +e B ) *e C ) = ( ( A *e C ) +e ( B *e C ) ) ) |
60 |
|
0xr |
|- 0 e. RR* |
61 |
60
|
a1i |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) -> 0 e. RR* ) |
62 |
|
simpl1 |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) -> A e. ( 0 [,] +oo ) ) |
63 |
1 62
|
sselid |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) -> A e. RR* ) |
64 |
|
pnfxr |
|- +oo e. RR* |
65 |
64
|
a1i |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) -> +oo e. RR* ) |
66 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> 0 <_ A ) |
67 |
61 65 62 66
|
syl3anc |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) -> 0 <_ A ) |
68 |
|
xrleloe |
|- ( ( 0 e. RR* /\ A e. RR* ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
69 |
68
|
biimpa |
|- ( ( ( 0 e. RR* /\ A e. RR* ) /\ 0 <_ A ) -> ( 0 < A \/ 0 = A ) ) |
70 |
61 63 67 69
|
syl21anc |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) -> ( 0 < A \/ 0 = A ) ) |
71 |
38 59 70
|
mpjaodan |
|- ( ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) /\ C = +oo ) -> ( ( A +e B ) *e C ) = ( ( A *e C ) +e ( B *e C ) ) ) |
72 |
|
0lepnf |
|- 0 <_ +oo |
73 |
|
eliccelico |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> ( C e. ( 0 [,] +oo ) <-> ( C e. ( 0 [,) +oo ) \/ C = +oo ) ) ) |
74 |
60 64 72 73
|
mp3an |
|- ( C e. ( 0 [,] +oo ) <-> ( C e. ( 0 [,) +oo ) \/ C = +oo ) ) |
75 |
74
|
3anbi3i |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) <-> ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ ( C e. ( 0 [,) +oo ) \/ C = +oo ) ) ) |
76 |
75
|
simp3bi |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( C e. ( 0 [,) +oo ) \/ C = +oo ) ) |
77 |
10 71 76
|
mpjaodan |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( ( A +e B ) *e C ) = ( ( A *e C ) +e ( B *e C ) ) ) |