| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssxr |
|
| 2 |
|
simpl1 |
|
| 3 |
1 2
|
sselid |
|
| 4 |
|
simpr |
|
| 5 |
|
simpl3 |
|
| 6 |
4 5
|
eqbrtrrd |
|
| 7 |
|
xgepnf |
|
| 8 |
7
|
biimpa |
|
| 9 |
3 6 8
|
syl2anc |
|
| 10 |
|
xnegeq |
|
| 11 |
4 10
|
syl |
|
| 12 |
9 11
|
oveq12d |
|
| 13 |
|
pnfxr |
|
| 14 |
|
xnegid |
|
| 15 |
13 14
|
ax-mp |
|
| 16 |
12 15
|
eqtrdi |
|
| 17 |
16
|
oveq1d |
|
| 18 |
4
|
oveq2d |
|
| 19 |
|
xaddlid |
|
| 20 |
13 19
|
mp1i |
|
| 21 |
17 18 20
|
3eqtrd |
|
| 22 |
21 9
|
eqtr4d |
|
| 23 |
|
simpl1 |
|
| 24 |
1 23
|
sselid |
|
| 25 |
|
xrge0neqmnf |
|
| 26 |
23 25
|
syl |
|
| 27 |
|
simpl2 |
|
| 28 |
1 27
|
sselid |
|
| 29 |
28
|
xnegcld |
|
| 30 |
|
simpr |
|
| 31 |
|
xnegneg |
|
| 32 |
|
xnegeq |
|
| 33 |
31 32
|
sylan9req |
|
| 34 |
|
xnegmnf |
|
| 35 |
33 34
|
eqtrdi |
|
| 36 |
35
|
stoic1a |
|
| 37 |
36
|
neqned |
|
| 38 |
28 30 37
|
syl2anc |
|
| 39 |
|
xrge0neqmnf |
|
| 40 |
27 39
|
syl |
|
| 41 |
|
xaddass |
|
| 42 |
24 26 29 38 28 40 41
|
syl222anc |
|
| 43 |
|
xnegcl |
|
| 44 |
|
xaddcom |
|
| 45 |
43 44
|
mpancom |
|
| 46 |
|
xnegid |
|
| 47 |
45 46
|
eqtrd |
|
| 48 |
47
|
oveq2d |
|
| 49 |
|
xaddrid |
|
| 50 |
48 49
|
sylan9eqr |
|
| 51 |
24 28 50
|
syl2anc |
|
| 52 |
42 51
|
eqtrd |
|
| 53 |
22 52
|
pm2.61dan |
|