Metamath Proof Explorer


Theorem xrge0npcan

Description: Extended nonnegative real version of npcan . (Contributed by Thierry Arnoux, 9-Jun-2017)

Ref Expression
Assertion xrge0npcan A 0 +∞ B 0 +∞ B A A + 𝑒 B + 𝑒 B = A

Proof

Step Hyp Ref Expression
1 iccssxr 0 +∞ *
2 simpl1 A 0 +∞ B 0 +∞ B A B = +∞ A 0 +∞
3 1 2 sselid A 0 +∞ B 0 +∞ B A B = +∞ A *
4 simpr A 0 +∞ B 0 +∞ B A B = +∞ B = +∞
5 simpl3 A 0 +∞ B 0 +∞ B A B = +∞ B A
6 4 5 eqbrtrrd A 0 +∞ B 0 +∞ B A B = +∞ +∞ A
7 xgepnf A * +∞ A A = +∞
8 7 biimpa A * +∞ A A = +∞
9 3 6 8 syl2anc A 0 +∞ B 0 +∞ B A B = +∞ A = +∞
10 xnegeq B = +∞ B = +∞
11 4 10 syl A 0 +∞ B 0 +∞ B A B = +∞ B = +∞
12 9 11 oveq12d A 0 +∞ B 0 +∞ B A B = +∞ A + 𝑒 B = +∞ + 𝑒 +∞
13 pnfxr +∞ *
14 xnegid +∞ * +∞ + 𝑒 +∞ = 0
15 13 14 ax-mp +∞ + 𝑒 +∞ = 0
16 12 15 eqtrdi A 0 +∞ B 0 +∞ B A B = +∞ A + 𝑒 B = 0
17 16 oveq1d A 0 +∞ B 0 +∞ B A B = +∞ A + 𝑒 B + 𝑒 B = 0 + 𝑒 B
18 4 oveq2d A 0 +∞ B 0 +∞ B A B = +∞ 0 + 𝑒 B = 0 + 𝑒 +∞
19 xaddid2 +∞ * 0 + 𝑒 +∞ = +∞
20 13 19 mp1i A 0 +∞ B 0 +∞ B A B = +∞ 0 + 𝑒 +∞ = +∞
21 17 18 20 3eqtrd A 0 +∞ B 0 +∞ B A B = +∞ A + 𝑒 B + 𝑒 B = +∞
22 21 9 eqtr4d A 0 +∞ B 0 +∞ B A B = +∞ A + 𝑒 B + 𝑒 B = A
23 simpl1 A 0 +∞ B 0 +∞ B A ¬ B = +∞ A 0 +∞
24 1 23 sselid A 0 +∞ B 0 +∞ B A ¬ B = +∞ A *
25 xrge0neqmnf A 0 +∞ A −∞
26 23 25 syl A 0 +∞ B 0 +∞ B A ¬ B = +∞ A −∞
27 simpl2 A 0 +∞ B 0 +∞ B A ¬ B = +∞ B 0 +∞
28 1 27 sselid A 0 +∞ B 0 +∞ B A ¬ B = +∞ B *
29 28 xnegcld A 0 +∞ B 0 +∞ B A ¬ B = +∞ B *
30 simpr A 0 +∞ B 0 +∞ B A ¬ B = +∞ ¬ B = +∞
31 xnegneg B * B = B
32 xnegeq B = −∞ B = −∞
33 31 32 sylan9req B * B = −∞ B = −∞
34 xnegmnf −∞ = +∞
35 33 34 eqtrdi B * B = −∞ B = +∞
36 35 stoic1a B * ¬ B = +∞ ¬ B = −∞
37 36 neqned B * ¬ B = +∞ B −∞
38 28 30 37 syl2anc A 0 +∞ B 0 +∞ B A ¬ B = +∞ B −∞
39 xrge0neqmnf B 0 +∞ B −∞
40 27 39 syl A 0 +∞ B 0 +∞ B A ¬ B = +∞ B −∞
41 xaddass A * A −∞ B * B −∞ B * B −∞ A + 𝑒 B + 𝑒 B = A + 𝑒 B + 𝑒 B
42 24 26 29 38 28 40 41 syl222anc A 0 +∞ B 0 +∞ B A ¬ B = +∞ A + 𝑒 B + 𝑒 B = A + 𝑒 B + 𝑒 B
43 xnegcl B * B *
44 xaddcom B * B * B + 𝑒 B = B + 𝑒 B
45 43 44 mpancom B * B + 𝑒 B = B + 𝑒 B
46 xnegid B * B + 𝑒 B = 0
47 45 46 eqtrd B * B + 𝑒 B = 0
48 47 oveq2d B * A + 𝑒 B + 𝑒 B = A + 𝑒 0
49 xaddid1 A * A + 𝑒 0 = A
50 48 49 sylan9eqr A * B * A + 𝑒 B + 𝑒 B = A
51 24 28 50 syl2anc A 0 +∞ B 0 +∞ B A ¬ B = +∞ A + 𝑒 B + 𝑒 B = A
52 42 51 eqtrd A 0 +∞ B 0 +∞ B A ¬ B = +∞ A + 𝑒 B + 𝑒 B = A
53 22 52 pm2.61dan A 0 +∞ B 0 +∞ B A A + 𝑒 B + 𝑒 B = A