Metamath Proof Explorer


Theorem xnegeq

Description: Equality of two extended numbers with -e in front of them. (Contributed by FL, 26-Dec-2011) (Proof shortened by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegeq A=BA=B

Proof

Step Hyp Ref Expression
1 eqeq1 A=BA=+∞B=+∞
2 eqeq1 A=BA=−∞B=−∞
3 negeq A=BA=B
4 2 3 ifbieq2d A=BifA=−∞+∞A=ifB=−∞+∞B
5 1 4 ifbieq2d A=BifA=+∞−∞ifA=−∞+∞A=ifB=+∞−∞ifB=−∞+∞B
6 df-xneg A=ifA=+∞−∞ifA=−∞+∞A
7 df-xneg B=ifB=+∞−∞ifB=−∞+∞B
8 5 6 7 3eqtr4g A=BA=B