Metamath Proof Explorer


Theorem resvplusg

Description: +g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypotheses resvbas.1 H = G 𝑣 A
resvplusg.2 + ˙ = + G
Assertion resvplusg A V + ˙ = + H

Proof

Step Hyp Ref Expression
1 resvbas.1 H = G 𝑣 A
2 resvplusg.2 + ˙ = + G
3 df-plusg + 𝑔 = Slot 2
4 2nn 2
5 2re 2
6 2lt5 2 < 5
7 5 6 ltneii 2 5
8 1 2 3 4 7 resvlem A V + ˙ = + H