Metamath Proof Explorer


Theorem isarchiofld

Description: Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018)

Ref Expression
Hypotheses isarchiofld.b 𝐵 = ( Base ‘ 𝑊 )
isarchiofld.h 𝐻 = ( ℤRHom ‘ 𝑊 )
isarchiofld.l < = ( lt ‘ 𝑊 )
Assertion isarchiofld ( 𝑊 ∈ oField → ( 𝑊 ∈ Archi ↔ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) )

Proof

Step Hyp Ref Expression
1 isarchiofld.b 𝐵 = ( Base ‘ 𝑊 )
2 isarchiofld.h 𝐻 = ( ℤRHom ‘ 𝑊 )
3 isarchiofld.l < = ( lt ‘ 𝑊 )
4 isofld ( 𝑊 ∈ oField ↔ ( 𝑊 ∈ Field ∧ 𝑊 ∈ oRing ) )
5 4 simprbi ( 𝑊 ∈ oField → 𝑊 ∈ oRing )
6 orngogrp ( 𝑊 ∈ oRing → 𝑊 ∈ oGrp )
7 eqid ( 0g𝑊 ) = ( 0g𝑊 )
8 eqid ( .g𝑊 ) = ( .g𝑊 )
9 1 7 3 8 isarchi3 ( 𝑊 ∈ oGrp → ( 𝑊 ∈ Archi ↔ ∀ 𝑦𝐵𝑥𝐵 ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) ) )
10 5 6 9 3syl ( 𝑊 ∈ oField → ( 𝑊 ∈ Archi ↔ ∀ 𝑦𝐵𝑥𝐵 ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) ) )
11 orngring ( 𝑊 ∈ oRing → 𝑊 ∈ Ring )
12 eqid ( 1r𝑊 ) = ( 1r𝑊 )
13 1 12 ringidcl ( 𝑊 ∈ Ring → ( 1r𝑊 ) ∈ 𝐵 )
14 5 11 13 3syl ( 𝑊 ∈ oField → ( 1r𝑊 ) ∈ 𝐵 )
15 breq2 ( 𝑦 = ( 1r𝑊 ) → ( ( 0g𝑊 ) < 𝑦 ↔ ( 0g𝑊 ) < ( 1r𝑊 ) ) )
16 oveq2 ( 𝑦 = ( 1r𝑊 ) → ( 𝑛 ( .g𝑊 ) 𝑦 ) = ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) )
17 16 breq2d ( 𝑦 = ( 1r𝑊 ) → ( 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ↔ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) )
18 17 rexbidv ( 𝑦 = ( 1r𝑊 ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) )
19 15 18 imbi12d ( 𝑦 = ( 1r𝑊 ) → ( ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) ↔ ( ( 0g𝑊 ) < ( 1r𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) ) )
20 19 ralbidv ( 𝑦 = ( 1r𝑊 ) → ( ∀ 𝑥𝐵 ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) ↔ ∀ 𝑥𝐵 ( ( 0g𝑊 ) < ( 1r𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) ) )
21 20 rspcv ( ( 1r𝑊 ) ∈ 𝐵 → ( ∀ 𝑦𝐵𝑥𝐵 ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) → ∀ 𝑥𝐵 ( ( 0g𝑊 ) < ( 1r𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) ) )
22 14 21 syl ( 𝑊 ∈ oField → ( ∀ 𝑦𝐵𝑥𝐵 ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) → ∀ 𝑥𝐵 ( ( 0g𝑊 ) < ( 1r𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) ) )
23 7 12 3 ofldlt1 ( 𝑊 ∈ oField → ( 0g𝑊 ) < ( 1r𝑊 ) )
24 pm5.5 ( ( 0g𝑊 ) < ( 1r𝑊 ) → ( ( ( 0g𝑊 ) < ( 1r𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) )
25 23 24 syl ( 𝑊 ∈ oField → ( ( ( 0g𝑊 ) < ( 1r𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) )
26 25 ralbidv ( 𝑊 ∈ oField → ( ∀ 𝑥𝐵 ( ( 0g𝑊 ) < ( 1r𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) ↔ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) )
27 22 26 sylibd ( 𝑊 ∈ oField → ( ∀ 𝑦𝐵𝑥𝐵 ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) → ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) )
28 5 11 syl ( 𝑊 ∈ oField → 𝑊 ∈ Ring )
29 nnz ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ )
30 2 8 12 zrhmulg ( ( 𝑊 ∈ Ring ∧ 𝑛 ∈ ℤ ) → ( 𝐻𝑛 ) = ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) )
31 28 29 30 syl2an ( ( 𝑊 ∈ oField ∧ 𝑛 ∈ ℕ ) → ( 𝐻𝑛 ) = ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) )
32 31 breq2d ( ( 𝑊 ∈ oField ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < ( 𝐻𝑛 ) ↔ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) )
33 32 rexbidva ( 𝑊 ∈ oField → ( ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) )
34 33 ralbidv ( 𝑊 ∈ oField → ( ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ↔ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ) )
35 27 34 sylibrd ( 𝑊 ∈ oField → ( ∀ 𝑦𝐵𝑥𝐵 ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) → ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) )
36 nfv 𝑥 𝑊 ∈ oField
37 nfra1 𝑥𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 )
38 36 37 nfan 𝑥 ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) )
39 nfv 𝑥 𝑦𝐵
40 38 39 nfan 𝑥 ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ 𝑦𝐵 )
41 28 ad3antrrr ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → 𝑊 ∈ Ring )
42 simplrr ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → 𝑥𝐵 )
43 simplrl ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → 𝑦𝐵 )
44 simpr ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → ( 0g𝑊 ) < 𝑦 )
45 simplll ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → 𝑊 ∈ oField )
46 ringgrp ( 𝑊 ∈ Ring → 𝑊 ∈ Grp )
47 1 7 grpidcl ( 𝑊 ∈ Grp → ( 0g𝑊 ) ∈ 𝐵 )
48 41 46 47 3syl ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → ( 0g𝑊 ) ∈ 𝐵 )
49 3 pltne ( ( 𝑊 ∈ oField ∧ ( 0g𝑊 ) ∈ 𝐵𝑦𝐵 ) → ( ( 0g𝑊 ) < 𝑦 → ( 0g𝑊 ) ≠ 𝑦 ) )
50 45 48 43 49 syl3anc ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → ( ( 0g𝑊 ) < 𝑦 → ( 0g𝑊 ) ≠ 𝑦 ) )
51 44 50 mpd ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → ( 0g𝑊 ) ≠ 𝑦 )
52 51 necomd ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → 𝑦 ≠ ( 0g𝑊 ) )
53 4 simplbi ( 𝑊 ∈ oField → 𝑊 ∈ Field )
54 isfld ( 𝑊 ∈ Field ↔ ( 𝑊 ∈ DivRing ∧ 𝑊 ∈ CRing ) )
55 54 simplbi ( 𝑊 ∈ Field → 𝑊 ∈ DivRing )
56 53 55 syl ( 𝑊 ∈ oField → 𝑊 ∈ DivRing )
57 eqid ( Unit ‘ 𝑊 ) = ( Unit ‘ 𝑊 )
58 1 57 7 drngunit ( 𝑊 ∈ DivRing → ( 𝑦 ∈ ( Unit ‘ 𝑊 ) ↔ ( 𝑦𝐵𝑦 ≠ ( 0g𝑊 ) ) ) )
59 45 56 58 3syl ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → ( 𝑦 ∈ ( Unit ‘ 𝑊 ) ↔ ( 𝑦𝐵𝑦 ≠ ( 0g𝑊 ) ) ) )
60 43 52 59 mpbir2and ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → 𝑦 ∈ ( Unit ‘ 𝑊 ) )
61 eqid ( /r𝑊 ) = ( /r𝑊 )
62 1 57 61 dvrcl ( ( 𝑊 ∈ Ring ∧ 𝑥𝐵𝑦 ∈ ( Unit ‘ 𝑊 ) ) → ( 𝑥 ( /r𝑊 ) 𝑦 ) ∈ 𝐵 )
63 41 42 60 62 syl3anc ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → ( 𝑥 ( /r𝑊 ) 𝑦 ) ∈ 𝐵 )
64 simpr ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) → ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) )
65 breq1 ( 𝑥 = 𝑧 → ( 𝑥 < ( 𝐻𝑛 ) ↔ 𝑧 < ( 𝐻𝑛 ) ) )
66 65 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ↔ ∃ 𝑛 ∈ ℕ 𝑧 < ( 𝐻𝑛 ) ) )
67 66 cbvralvw ( ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ↔ ∀ 𝑧𝐵𝑛 ∈ ℕ 𝑧 < ( 𝐻𝑛 ) )
68 64 67 sylib ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) → ∀ 𝑧𝐵𝑛 ∈ ℕ 𝑧 < ( 𝐻𝑛 ) )
69 68 ad2antrr ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → ∀ 𝑧𝐵𝑛 ∈ ℕ 𝑧 < ( 𝐻𝑛 ) )
70 breq1 ( 𝑧 = ( 𝑥 ( /r𝑊 ) 𝑦 ) → ( 𝑧 < ( 𝐻𝑛 ) ↔ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) )
71 70 rexbidv ( 𝑧 = ( 𝑥 ( /r𝑊 ) 𝑦 ) → ( ∃ 𝑛 ∈ ℕ 𝑧 < ( 𝐻𝑛 ) ↔ ∃ 𝑛 ∈ ℕ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) )
72 71 rspcv ( ( 𝑥 ( /r𝑊 ) 𝑦 ) ∈ 𝐵 → ( ∀ 𝑧𝐵𝑛 ∈ ℕ 𝑧 < ( 𝐻𝑛 ) → ∃ 𝑛 ∈ ℕ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) )
73 63 69 72 sylc ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → ∃ 𝑛 ∈ ℕ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) )
74 eqid ( .r𝑊 ) = ( .r𝑊 )
75 simp-4l ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑊 ∈ oField )
76 75 5 syl ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑊 ∈ oRing )
77 75 28 syl ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑊 ∈ Ring )
78 simp-4r ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 𝑦𝐵𝑥𝐵 ) )
79 78 simprd ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑥𝐵 )
80 78 simpld ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑦𝐵 )
81 simpllr ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 0g𝑊 ) < 𝑦 )
82 77 46 47 3syl ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 0g𝑊 ) ∈ 𝐵 )
83 75 82 80 49 syl3anc ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( ( 0g𝑊 ) < 𝑦 → ( 0g𝑊 ) ≠ 𝑦 ) )
84 81 83 mpd ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 0g𝑊 ) ≠ 𝑦 )
85 84 necomd ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑦 ≠ ( 0g𝑊 ) )
86 75 56 58 3syl ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 𝑦 ∈ ( Unit ‘ 𝑊 ) ↔ ( 𝑦𝐵𝑦 ≠ ( 0g𝑊 ) ) ) )
87 80 85 86 mpbir2and ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑦 ∈ ( Unit ‘ 𝑊 ) )
88 77 79 87 62 syl3anc ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 𝑥 ( /r𝑊 ) 𝑦 ) ∈ 𝐵 )
89 simplr ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑛 ∈ ℕ )
90 75 89 31 syl2anc ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 𝐻𝑛 ) = ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) )
91 77 46 syl ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑊 ∈ Grp )
92 89 29 syl ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑛 ∈ ℤ )
93 77 13 syl ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 1r𝑊 ) ∈ 𝐵 )
94 1 8 mulgcl ( ( 𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ ( 1r𝑊 ) ∈ 𝐵 ) → ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ∈ 𝐵 )
95 91 92 93 94 syl3anc ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ∈ 𝐵 )
96 90 95 eqeltrd ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 𝐻𝑛 ) ∈ 𝐵 )
97 75 56 syl ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑊 ∈ DivRing )
98 simpr ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) )
99 1 74 7 76 88 96 80 3 97 98 81 orngrmullt ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( ( 𝑥 ( /r𝑊 ) 𝑦 ) ( .r𝑊 ) 𝑦 ) < ( ( 𝐻𝑛 ) ( .r𝑊 ) 𝑦 ) )
100 1 57 61 74 dvrcan1 ( ( 𝑊 ∈ Ring ∧ 𝑥𝐵𝑦 ∈ ( Unit ‘ 𝑊 ) ) → ( ( 𝑥 ( /r𝑊 ) 𝑦 ) ( .r𝑊 ) 𝑦 ) = 𝑥 )
101 77 79 87 100 syl3anc ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( ( 𝑥 ( /r𝑊 ) 𝑦 ) ( .r𝑊 ) 𝑦 ) = 𝑥 )
102 90 oveq1d ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( ( 𝐻𝑛 ) ( .r𝑊 ) 𝑦 ) = ( ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ( .r𝑊 ) 𝑦 ) )
103 1 8 74 mulgass2 ( ( 𝑊 ∈ Ring ∧ ( 𝑛 ∈ ℤ ∧ ( 1r𝑊 ) ∈ 𝐵𝑦𝐵 ) ) → ( ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ( .r𝑊 ) 𝑦 ) = ( 𝑛 ( .g𝑊 ) ( ( 1r𝑊 ) ( .r𝑊 ) 𝑦 ) ) )
104 77 92 93 80 103 syl13anc ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( ( 𝑛 ( .g𝑊 ) ( 1r𝑊 ) ) ( .r𝑊 ) 𝑦 ) = ( 𝑛 ( .g𝑊 ) ( ( 1r𝑊 ) ( .r𝑊 ) 𝑦 ) ) )
105 1 74 12 ringlidm ( ( 𝑊 ∈ Ring ∧ 𝑦𝐵 ) → ( ( 1r𝑊 ) ( .r𝑊 ) 𝑦 ) = 𝑦 )
106 77 80 105 syl2anc ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( ( 1r𝑊 ) ( .r𝑊 ) 𝑦 ) = 𝑦 )
107 106 oveq2d ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( 𝑛 ( .g𝑊 ) ( ( 1r𝑊 ) ( .r𝑊 ) 𝑦 ) ) = ( 𝑛 ( .g𝑊 ) 𝑦 ) )
108 102 104 107 3eqtrd ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → ( ( 𝐻𝑛 ) ( .r𝑊 ) 𝑦 ) = ( 𝑛 ( .g𝑊 ) 𝑦 ) )
109 99 101 108 3brtr3d ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) ) → 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) )
110 109 ex ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) → 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) )
111 110 reximdva ( ( ( 𝑊 ∈ oField ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → ( ∃ 𝑛 ∈ ℕ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) )
112 111 adantllr ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → ( ∃ 𝑛 ∈ ℕ ( 𝑥 ( /r𝑊 ) 𝑦 ) < ( 𝐻𝑛 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) )
113 73 112 mpd ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) ∧ ( 0g𝑊 ) < 𝑦 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) )
114 113 ex ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ ( 𝑦𝐵𝑥𝐵 ) ) → ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) )
115 114 expr ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ 𝑦𝐵 ) → ( 𝑥𝐵 → ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) ) )
116 40 115 ralrimi ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) ∧ 𝑦𝐵 ) → ∀ 𝑥𝐵 ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) )
117 116 ralrimiva ( ( 𝑊 ∈ oField ∧ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) → ∀ 𝑦𝐵𝑥𝐵 ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) )
118 117 ex ( 𝑊 ∈ oField → ( ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) → ∀ 𝑦𝐵𝑥𝐵 ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) ) )
119 35 118 impbid ( 𝑊 ∈ oField → ( ∀ 𝑦𝐵𝑥𝐵 ( ( 0g𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g𝑊 ) 𝑦 ) ) ↔ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) )
120 10 119 bitrd ( 𝑊 ∈ oField → ( 𝑊 ∈ Archi ↔ ∀ 𝑥𝐵𝑛 ∈ ℕ 𝑥 < ( 𝐻𝑛 ) ) )