Step |
Hyp |
Ref |
Expression |
1 |
|
isarchiofld.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
isarchiofld.h |
⊢ 𝐻 = ( ℤRHom ‘ 𝑊 ) |
3 |
|
isarchiofld.l |
⊢ < = ( lt ‘ 𝑊 ) |
4 |
|
isofld |
⊢ ( 𝑊 ∈ oField ↔ ( 𝑊 ∈ Field ∧ 𝑊 ∈ oRing ) ) |
5 |
4
|
simprbi |
⊢ ( 𝑊 ∈ oField → 𝑊 ∈ oRing ) |
6 |
|
orngogrp |
⊢ ( 𝑊 ∈ oRing → 𝑊 ∈ oGrp ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( .g ‘ 𝑊 ) = ( .g ‘ 𝑊 ) |
9 |
1 7 3 8
|
isarchi3 |
⊢ ( 𝑊 ∈ oGrp → ( 𝑊 ∈ Archi ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ) ) |
10 |
5 6 9
|
3syl |
⊢ ( 𝑊 ∈ oField → ( 𝑊 ∈ Archi ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ) ) |
11 |
|
orngring |
⊢ ( 𝑊 ∈ oRing → 𝑊 ∈ Ring ) |
12 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
13 |
1 12
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ 𝐵 ) |
14 |
5 11 13
|
3syl |
⊢ ( 𝑊 ∈ oField → ( 1r ‘ 𝑊 ) ∈ 𝐵 ) |
15 |
|
breq2 |
⊢ ( 𝑦 = ( 1r ‘ 𝑊 ) → ( ( 0g ‘ 𝑊 ) < 𝑦 ↔ ( 0g ‘ 𝑊 ) < ( 1r ‘ 𝑊 ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑦 = ( 1r ‘ 𝑊 ) → ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) = ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
17 |
16
|
breq2d |
⊢ ( 𝑦 = ( 1r ‘ 𝑊 ) → ( 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ↔ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝑦 = ( 1r ‘ 𝑊 ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
19 |
15 18
|
imbi12d |
⊢ ( 𝑦 = ( 1r ‘ 𝑊 ) → ( ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ↔ ( ( 0g ‘ 𝑊 ) < ( 1r ‘ 𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑦 = ( 1r ‘ 𝑊 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < ( 1r ‘ 𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) ) |
21 |
20
|
rspcv |
⊢ ( ( 1r ‘ 𝑊 ) ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) → ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < ( 1r ‘ 𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) ) |
22 |
14 21
|
syl |
⊢ ( 𝑊 ∈ oField → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) → ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < ( 1r ‘ 𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) ) |
23 |
7 12 3
|
ofldlt1 |
⊢ ( 𝑊 ∈ oField → ( 0g ‘ 𝑊 ) < ( 1r ‘ 𝑊 ) ) |
24 |
|
pm5.5 |
⊢ ( ( 0g ‘ 𝑊 ) < ( 1r ‘ 𝑊 ) → ( ( ( 0g ‘ 𝑊 ) < ( 1r ‘ 𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
25 |
23 24
|
syl |
⊢ ( 𝑊 ∈ oField → ( ( ( 0g ‘ 𝑊 ) < ( 1r ‘ 𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
26 |
25
|
ralbidv |
⊢ ( 𝑊 ∈ oField → ( ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < ( 1r ‘ 𝑊 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
27 |
22 26
|
sylibd |
⊢ ( 𝑊 ∈ oField → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) → ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
28 |
5 11
|
syl |
⊢ ( 𝑊 ∈ oField → 𝑊 ∈ Ring ) |
29 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
30 |
2 8 12
|
zrhmulg |
⊢ ( ( 𝑊 ∈ Ring ∧ 𝑛 ∈ ℤ ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
31 |
28 29 30
|
syl2an |
⊢ ( ( 𝑊 ∈ oField ∧ 𝑛 ∈ ℕ ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
32 |
31
|
breq2d |
⊢ ( ( 𝑊 ∈ oField ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < ( 𝐻 ‘ 𝑛 ) ↔ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
33 |
32
|
rexbidva |
⊢ ( 𝑊 ∈ oField → ( ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
34 |
33
|
ralbidv |
⊢ ( 𝑊 ∈ oField → ( ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ↔ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) ) |
35 |
27 34
|
sylibrd |
⊢ ( 𝑊 ∈ oField → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) → ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ) |
36 |
|
nfv |
⊢ Ⅎ 𝑥 𝑊 ∈ oField |
37 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) |
38 |
36 37
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) |
39 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
40 |
38 39
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) |
41 |
28
|
ad3antrrr |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → 𝑊 ∈ Ring ) |
42 |
|
simplrr |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → 𝑥 ∈ 𝐵 ) |
43 |
|
simplrl |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → 𝑦 ∈ 𝐵 ) |
44 |
|
simpr |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → ( 0g ‘ 𝑊 ) < 𝑦 ) |
45 |
|
simplll |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → 𝑊 ∈ oField ) |
46 |
|
ringgrp |
⊢ ( 𝑊 ∈ Ring → 𝑊 ∈ Grp ) |
47 |
1 7
|
grpidcl |
⊢ ( 𝑊 ∈ Grp → ( 0g ‘ 𝑊 ) ∈ 𝐵 ) |
48 |
41 46 47
|
3syl |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → ( 0g ‘ 𝑊 ) ∈ 𝐵 ) |
49 |
3
|
pltne |
⊢ ( ( 𝑊 ∈ oField ∧ ( 0g ‘ 𝑊 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝑊 ) < 𝑦 → ( 0g ‘ 𝑊 ) ≠ 𝑦 ) ) |
50 |
45 48 43 49
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → ( ( 0g ‘ 𝑊 ) < 𝑦 → ( 0g ‘ 𝑊 ) ≠ 𝑦 ) ) |
51 |
44 50
|
mpd |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → ( 0g ‘ 𝑊 ) ≠ 𝑦 ) |
52 |
51
|
necomd |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → 𝑦 ≠ ( 0g ‘ 𝑊 ) ) |
53 |
4
|
simplbi |
⊢ ( 𝑊 ∈ oField → 𝑊 ∈ Field ) |
54 |
|
isfld |
⊢ ( 𝑊 ∈ Field ↔ ( 𝑊 ∈ DivRing ∧ 𝑊 ∈ CRing ) ) |
55 |
54
|
simplbi |
⊢ ( 𝑊 ∈ Field → 𝑊 ∈ DivRing ) |
56 |
53 55
|
syl |
⊢ ( 𝑊 ∈ oField → 𝑊 ∈ DivRing ) |
57 |
|
eqid |
⊢ ( Unit ‘ 𝑊 ) = ( Unit ‘ 𝑊 ) |
58 |
1 57 7
|
drngunit |
⊢ ( 𝑊 ∈ DivRing → ( 𝑦 ∈ ( Unit ‘ 𝑊 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑊 ) ) ) ) |
59 |
45 56 58
|
3syl |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → ( 𝑦 ∈ ( Unit ‘ 𝑊 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑊 ) ) ) ) |
60 |
43 52 59
|
mpbir2and |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → 𝑦 ∈ ( Unit ‘ 𝑊 ) ) |
61 |
|
eqid |
⊢ ( /r ‘ 𝑊 ) = ( /r ‘ 𝑊 ) |
62 |
1 57 61
|
dvrcl |
⊢ ( ( 𝑊 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ ( Unit ‘ 𝑊 ) ) → ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
63 |
41 42 60 62
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
64 |
|
simpr |
⊢ ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) → ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) |
65 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 < ( 𝐻 ‘ 𝑛 ) ↔ 𝑧 < ( 𝐻 ‘ 𝑛 ) ) ) |
66 |
65
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ 𝑧 < ( 𝐻 ‘ 𝑛 ) ) ) |
67 |
66
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ↔ ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑧 < ( 𝐻 ‘ 𝑛 ) ) |
68 |
64 67
|
sylib |
⊢ ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑧 < ( 𝐻 ‘ 𝑛 ) ) |
69 |
68
|
ad2antrr |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑧 < ( 𝐻 ‘ 𝑛 ) ) |
70 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) → ( 𝑧 < ( 𝐻 ‘ 𝑛 ) ↔ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) ) |
71 |
70
|
rexbidv |
⊢ ( 𝑧 = ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) → ( ∃ 𝑛 ∈ ℕ 𝑧 < ( 𝐻 ‘ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) ) |
72 |
71
|
rspcv |
⊢ ( ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 → ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑧 < ( 𝐻 ‘ 𝑛 ) → ∃ 𝑛 ∈ ℕ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) ) |
73 |
63 69 72
|
sylc |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → ∃ 𝑛 ∈ ℕ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) |
74 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
75 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑊 ∈ oField ) |
76 |
75 5
|
syl |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑊 ∈ oRing ) |
77 |
75 28
|
syl |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑊 ∈ Ring ) |
78 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) |
79 |
78
|
simprd |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑥 ∈ 𝐵 ) |
80 |
78
|
simpld |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑦 ∈ 𝐵 ) |
81 |
|
simpllr |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 0g ‘ 𝑊 ) < 𝑦 ) |
82 |
77 46 47
|
3syl |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 0g ‘ 𝑊 ) ∈ 𝐵 ) |
83 |
75 82 80 49
|
syl3anc |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( ( 0g ‘ 𝑊 ) < 𝑦 → ( 0g ‘ 𝑊 ) ≠ 𝑦 ) ) |
84 |
81 83
|
mpd |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 0g ‘ 𝑊 ) ≠ 𝑦 ) |
85 |
84
|
necomd |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑦 ≠ ( 0g ‘ 𝑊 ) ) |
86 |
75 56 58
|
3syl |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 𝑦 ∈ ( Unit ‘ 𝑊 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ ( 0g ‘ 𝑊 ) ) ) ) |
87 |
80 85 86
|
mpbir2and |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑦 ∈ ( Unit ‘ 𝑊 ) ) |
88 |
77 79 87 62
|
syl3anc |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) ∈ 𝐵 ) |
89 |
|
simplr |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑛 ∈ ℕ ) |
90 |
75 89 31
|
syl2anc |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 𝐻 ‘ 𝑛 ) = ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
91 |
77 46
|
syl |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑊 ∈ Grp ) |
92 |
89 29
|
syl |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑛 ∈ ℤ ) |
93 |
77 13
|
syl |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 1r ‘ 𝑊 ) ∈ 𝐵 ) |
94 |
1 8
|
mulgcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ ( 1r ‘ 𝑊 ) ∈ 𝐵 ) → ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ∈ 𝐵 ) |
95 |
91 92 93 94
|
syl3anc |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ∈ 𝐵 ) |
96 |
90 95
|
eqeltrd |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 𝐻 ‘ 𝑛 ) ∈ 𝐵 ) |
97 |
75 56
|
syl |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑊 ∈ DivRing ) |
98 |
|
simpr |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) |
99 |
1 74 7 76 88 96 80 3 97 98 81
|
orngrmullt |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑦 ) < ( ( 𝐻 ‘ 𝑛 ) ( .r ‘ 𝑊 ) 𝑦 ) ) |
100 |
1 57 61 74
|
dvrcan1 |
⊢ ( ( 𝑊 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ ( Unit ‘ 𝑊 ) ) → ( ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑦 ) = 𝑥 ) |
101 |
77 79 87 100
|
syl3anc |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑦 ) = 𝑥 ) |
102 |
90
|
oveq1d |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝐻 ‘ 𝑛 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( .r ‘ 𝑊 ) 𝑦 ) ) |
103 |
1 8 74
|
mulgass2 |
⊢ ( ( 𝑊 ∈ Ring ∧ ( 𝑛 ∈ ℤ ∧ ( 1r ‘ 𝑊 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑛 ( .g ‘ 𝑊 ) ( ( 1r ‘ 𝑊 ) ( .r ‘ 𝑊 ) 𝑦 ) ) ) |
104 |
77 92 93 80 103
|
syl13anc |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝑛 ( .g ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑛 ( .g ‘ 𝑊 ) ( ( 1r ‘ 𝑊 ) ( .r ‘ 𝑊 ) 𝑦 ) ) ) |
105 |
1 74 12
|
ringlidm |
⊢ ( ( 𝑊 ∈ Ring ∧ 𝑦 ∈ 𝐵 ) → ( ( 1r ‘ 𝑊 ) ( .r ‘ 𝑊 ) 𝑦 ) = 𝑦 ) |
106 |
77 80 105
|
syl2anc |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( ( 1r ‘ 𝑊 ) ( .r ‘ 𝑊 ) 𝑦 ) = 𝑦 ) |
107 |
106
|
oveq2d |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( 𝑛 ( .g ‘ 𝑊 ) ( ( 1r ‘ 𝑊 ) ( .r ‘ 𝑊 ) 𝑦 ) ) = ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) |
108 |
102 104 107
|
3eqtrd |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → ( ( 𝐻 ‘ 𝑛 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) |
109 |
99 101 108
|
3brtr3d |
⊢ ( ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) ) → 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) |
110 |
109
|
ex |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) → 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ) |
111 |
110
|
reximdva |
⊢ ( ( ( 𝑊 ∈ oField ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → ( ∃ 𝑛 ∈ ℕ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ) |
112 |
111
|
adantllr |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → ( ∃ 𝑛 ∈ ℕ ( 𝑥 ( /r ‘ 𝑊 ) 𝑦 ) < ( 𝐻 ‘ 𝑛 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ) |
113 |
73 112
|
mpd |
⊢ ( ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ∧ ( 0g ‘ 𝑊 ) < 𝑦 ) → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) |
114 |
113
|
ex |
⊢ ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ) |
115 |
114
|
expr |
⊢ ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ) ) |
116 |
40 115
|
ralrimi |
⊢ ( ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ) |
117 |
116
|
ralrimiva |
⊢ ( ( 𝑊 ∈ oField ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ) |
118 |
117
|
ex |
⊢ ( 𝑊 ∈ oField → ( ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ) ) |
119 |
35 118
|
impbid |
⊢ ( 𝑊 ∈ oField → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 0g ‘ 𝑊 ) < 𝑦 → ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝑛 ( .g ‘ 𝑊 ) 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ) |
120 |
10 119
|
bitrd |
⊢ ( 𝑊 ∈ oField → ( 𝑊 ∈ Archi ↔ ∀ 𝑥 ∈ 𝐵 ∃ 𝑛 ∈ ℕ 𝑥 < ( 𝐻 ‘ 𝑛 ) ) ) |