| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ornglmullt.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
ornglmullt.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
ornglmullt.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
ornglmullt.1 |
⊢ ( 𝜑 → 𝑅 ∈ oRing ) |
| 5 |
|
ornglmullt.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
ornglmullt.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
ornglmullt.4 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 8 |
|
ornglmullt.l |
⊢ < = ( lt ‘ 𝑅 ) |
| 9 |
|
ornglmullt.d |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 10 |
|
ornglmullt.5 |
⊢ ( 𝜑 → 𝑋 < 𝑌 ) |
| 11 |
|
ornglmullt.6 |
⊢ ( 𝜑 → 0 < 𝑍 ) |
| 12 |
|
eqid |
⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) |
| 13 |
12 8
|
pltle |
⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → 𝑋 ( le ‘ 𝑅 ) 𝑌 ) ) |
| 14 |
13
|
imp |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ( le ‘ 𝑅 ) 𝑌 ) |
| 15 |
4 5 6 10 14
|
syl31anc |
⊢ ( 𝜑 → 𝑋 ( le ‘ 𝑅 ) 𝑌 ) |
| 16 |
|
orngring |
⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) |
| 17 |
4 16
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 18 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 19 |
1 3
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
| 20 |
17 18 19
|
3syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 21 |
12 8
|
pltle |
⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 0 < 𝑍 → 0 ( le ‘ 𝑅 ) 𝑍 ) ) |
| 22 |
21
|
imp |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 0 < 𝑍 ) → 0 ( le ‘ 𝑅 ) 𝑍 ) |
| 23 |
4 20 7 11 22
|
syl31anc |
⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) 𝑍 ) |
| 24 |
1 2 3 4 5 6 7 12 15 23
|
orngrmulle |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) ( le ‘ 𝑅 ) ( 𝑌 · 𝑍 ) ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) |
| 26 |
25
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → ( ( 𝑋 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = ( ( 𝑌 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) ) |
| 27 |
8
|
pltne |
⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 0 < 𝑍 → 0 ≠ 𝑍 ) ) |
| 28 |
27
|
imp |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 0 < 𝑍 ) → 0 ≠ 𝑍 ) |
| 29 |
4 20 7 11 28
|
syl31anc |
⊢ ( 𝜑 → 0 ≠ 𝑍 ) |
| 30 |
29
|
necomd |
⊢ ( 𝜑 → 𝑍 ≠ 0 ) |
| 31 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 32 |
1 31 3
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( 𝑍 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑍 ∈ 𝐵 ∧ 𝑍 ≠ 0 ) ) ) |
| 33 |
32
|
biimpar |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑍 ≠ 0 ) ) → 𝑍 ∈ ( Unit ‘ 𝑅 ) ) |
| 34 |
9 7 30 33
|
syl12anc |
⊢ ( 𝜑 → 𝑍 ∈ ( Unit ‘ 𝑅 ) ) |
| 35 |
|
eqid |
⊢ ( /r ‘ 𝑅 ) = ( /r ‘ 𝑅 ) |
| 36 |
1 31 35 2
|
dvrcan3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑋 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) |
| 37 |
17 5 34 36
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → ( ( 𝑋 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) |
| 39 |
1 31 35 2
|
dvrcan3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑌 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑌 ) |
| 40 |
17 6 34 39
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑌 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑌 ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → ( ( 𝑌 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑌 ) |
| 42 |
26 38 41
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → 𝑋 = 𝑌 ) |
| 43 |
8
|
pltne |
⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → 𝑋 ≠ 𝑌 ) ) |
| 44 |
43
|
imp |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ≠ 𝑌 ) |
| 45 |
4 5 6 10 44
|
syl31anc |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → 𝑋 ≠ 𝑌 ) |
| 47 |
46
|
neneqd |
⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → ¬ 𝑋 = 𝑌 ) |
| 48 |
42 47
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) |
| 49 |
48
|
neqned |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) ≠ ( 𝑌 · 𝑍 ) ) |
| 50 |
1 2
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 51 |
17 5 7 50
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 52 |
1 2
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 · 𝑍 ) ∈ 𝐵 ) |
| 53 |
17 6 7 52
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 · 𝑍 ) ∈ 𝐵 ) |
| 54 |
12 8
|
pltval |
⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 · 𝑍 ) ∈ 𝐵 ∧ ( 𝑌 · 𝑍 ) ∈ 𝐵 ) → ( ( 𝑋 · 𝑍 ) < ( 𝑌 · 𝑍 ) ↔ ( ( 𝑋 · 𝑍 ) ( le ‘ 𝑅 ) ( 𝑌 · 𝑍 ) ∧ ( 𝑋 · 𝑍 ) ≠ ( 𝑌 · 𝑍 ) ) ) ) |
| 55 |
4 51 53 54
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) < ( 𝑌 · 𝑍 ) ↔ ( ( 𝑋 · 𝑍 ) ( le ‘ 𝑅 ) ( 𝑌 · 𝑍 ) ∧ ( 𝑋 · 𝑍 ) ≠ ( 𝑌 · 𝑍 ) ) ) ) |
| 56 |
24 49 55
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) < ( 𝑌 · 𝑍 ) ) |