| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orngmullt.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
orngmullt.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
orngmullt.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
orngmullt.l |
⊢ < = ( lt ‘ 𝑅 ) |
| 5 |
|
orngmullt.1 |
⊢ ( 𝜑 → 𝑅 ∈ oRing ) |
| 6 |
|
orngmullt.4 |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
| 7 |
|
orngmullt.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
orngmullt.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 9 |
|
orngmullt.x |
⊢ ( 𝜑 → 0 < 𝑋 ) |
| 10 |
|
orngmullt.y |
⊢ ( 𝜑 → 0 < 𝑌 ) |
| 11 |
|
orngring |
⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) |
| 12 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 13 |
1 3
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
| 14 |
5 11 12 13
|
4syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 15 |
|
eqid |
⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) |
| 16 |
15 4
|
pltval |
⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝑅 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
| 17 |
5 14 7 16
|
syl3anc |
⊢ ( 𝜑 → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝑅 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
| 18 |
9 17
|
mpbid |
⊢ ( 𝜑 → ( 0 ( le ‘ 𝑅 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) |
| 19 |
18
|
simpld |
⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) 𝑋 ) |
| 20 |
15 4
|
pltval |
⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 < 𝑌 ↔ ( 0 ( le ‘ 𝑅 ) 𝑌 ∧ 0 ≠ 𝑌 ) ) ) |
| 21 |
5 14 8 20
|
syl3anc |
⊢ ( 𝜑 → ( 0 < 𝑌 ↔ ( 0 ( le ‘ 𝑅 ) 𝑌 ∧ 0 ≠ 𝑌 ) ) ) |
| 22 |
10 21
|
mpbid |
⊢ ( 𝜑 → ( 0 ( le ‘ 𝑅 ) 𝑌 ∧ 0 ≠ 𝑌 ) ) |
| 23 |
22
|
simpld |
⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) 𝑌 ) |
| 24 |
1 15 3 2
|
orngmul |
⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ( le ‘ 𝑅 ) 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ( le ‘ 𝑅 ) 𝑌 ) ) → 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
| 25 |
5 7 19 8 23 24
|
syl122anc |
⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
| 26 |
18
|
simprd |
⊢ ( 𝜑 → 0 ≠ 𝑋 ) |
| 27 |
26
|
necomd |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 28 |
22
|
simprd |
⊢ ( 𝜑 → 0 ≠ 𝑌 ) |
| 29 |
28
|
necomd |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
| 30 |
1 3 2 6 7 8
|
drngmulne0 |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) ≠ 0 ↔ ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ) ) |
| 31 |
27 29 30
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ≠ 0 ) |
| 32 |
31
|
necomd |
⊢ ( 𝜑 → 0 ≠ ( 𝑋 · 𝑌 ) ) |
| 33 |
5 11
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 34 |
1 2
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 35 |
33 7 8 34
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 36 |
15 4
|
pltval |
⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ ( 𝑋 · 𝑌 ) ∈ 𝐵 ) → ( 0 < ( 𝑋 · 𝑌 ) ↔ ( 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ∧ 0 ≠ ( 𝑋 · 𝑌 ) ) ) ) |
| 37 |
5 14 35 36
|
syl3anc |
⊢ ( 𝜑 → ( 0 < ( 𝑋 · 𝑌 ) ↔ ( 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ∧ 0 ≠ ( 𝑋 · 𝑌 ) ) ) ) |
| 38 |
25 32 37
|
mpbir2and |
⊢ ( 𝜑 → 0 < ( 𝑋 · 𝑌 ) ) |