Step |
Hyp |
Ref |
Expression |
1 |
|
orngmullt.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
orngmullt.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
orngmullt.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
orngmullt.l |
⊢ < = ( lt ‘ 𝑅 ) |
5 |
|
orngmullt.1 |
⊢ ( 𝜑 → 𝑅 ∈ oRing ) |
6 |
|
orngmullt.4 |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
7 |
|
orngmullt.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
orngmullt.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
orngmullt.x |
⊢ ( 𝜑 → 0 < 𝑋 ) |
10 |
|
orngmullt.y |
⊢ ( 𝜑 → 0 < 𝑌 ) |
11 |
|
orngring |
⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) |
12 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
13 |
1 3
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
14 |
5 11 12 13
|
4syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
15 |
|
eqid |
⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) |
16 |
15 4
|
pltval |
⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝑅 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
17 |
5 14 7 16
|
syl3anc |
⊢ ( 𝜑 → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝑅 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
18 |
9 17
|
mpbid |
⊢ ( 𝜑 → ( 0 ( le ‘ 𝑅 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) 𝑋 ) |
20 |
15 4
|
pltval |
⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 < 𝑌 ↔ ( 0 ( le ‘ 𝑅 ) 𝑌 ∧ 0 ≠ 𝑌 ) ) ) |
21 |
5 14 8 20
|
syl3anc |
⊢ ( 𝜑 → ( 0 < 𝑌 ↔ ( 0 ( le ‘ 𝑅 ) 𝑌 ∧ 0 ≠ 𝑌 ) ) ) |
22 |
10 21
|
mpbid |
⊢ ( 𝜑 → ( 0 ( le ‘ 𝑅 ) 𝑌 ∧ 0 ≠ 𝑌 ) ) |
23 |
22
|
simpld |
⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) 𝑌 ) |
24 |
1 15 3 2
|
orngmul |
⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ( le ‘ 𝑅 ) 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ( le ‘ 𝑅 ) 𝑌 ) ) → 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
25 |
5 7 19 8 23 24
|
syl122anc |
⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
26 |
18
|
simprd |
⊢ ( 𝜑 → 0 ≠ 𝑋 ) |
27 |
26
|
necomd |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
28 |
22
|
simprd |
⊢ ( 𝜑 → 0 ≠ 𝑌 ) |
29 |
28
|
necomd |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
30 |
1 3 2 6 7 8
|
drngmulne0 |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) ≠ 0 ↔ ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ) ) |
31 |
27 29 30
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ≠ 0 ) |
32 |
31
|
necomd |
⊢ ( 𝜑 → 0 ≠ ( 𝑋 · 𝑌 ) ) |
33 |
5 11
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
34 |
1 2
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
35 |
33 7 8 34
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
36 |
15 4
|
pltval |
⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ ( 𝑋 · 𝑌 ) ∈ 𝐵 ) → ( 0 < ( 𝑋 · 𝑌 ) ↔ ( 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ∧ 0 ≠ ( 𝑋 · 𝑌 ) ) ) ) |
37 |
5 14 35 36
|
syl3anc |
⊢ ( 𝜑 → ( 0 < ( 𝑋 · 𝑌 ) ↔ ( 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ∧ 0 ≠ ( 𝑋 · 𝑌 ) ) ) ) |
38 |
25 32 37
|
mpbir2and |
⊢ ( 𝜑 → 0 < ( 𝑋 · 𝑌 ) ) |