| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orngmullt.b |
|- B = ( Base ` R ) |
| 2 |
|
orngmullt.t |
|- .x. = ( .r ` R ) |
| 3 |
|
orngmullt.0 |
|- .0. = ( 0g ` R ) |
| 4 |
|
orngmullt.l |
|- .< = ( lt ` R ) |
| 5 |
|
orngmullt.1 |
|- ( ph -> R e. oRing ) |
| 6 |
|
orngmullt.4 |
|- ( ph -> R e. DivRing ) |
| 7 |
|
orngmullt.2 |
|- ( ph -> X e. B ) |
| 8 |
|
orngmullt.3 |
|- ( ph -> Y e. B ) |
| 9 |
|
orngmullt.x |
|- ( ph -> .0. .< X ) |
| 10 |
|
orngmullt.y |
|- ( ph -> .0. .< Y ) |
| 11 |
|
orngring |
|- ( R e. oRing -> R e. Ring ) |
| 12 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 13 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
| 14 |
5 11 12 13
|
4syl |
|- ( ph -> .0. e. B ) |
| 15 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
| 16 |
15 4
|
pltval |
|- ( ( R e. oRing /\ .0. e. B /\ X e. B ) -> ( .0. .< X <-> ( .0. ( le ` R ) X /\ .0. =/= X ) ) ) |
| 17 |
5 14 7 16
|
syl3anc |
|- ( ph -> ( .0. .< X <-> ( .0. ( le ` R ) X /\ .0. =/= X ) ) ) |
| 18 |
9 17
|
mpbid |
|- ( ph -> ( .0. ( le ` R ) X /\ .0. =/= X ) ) |
| 19 |
18
|
simpld |
|- ( ph -> .0. ( le ` R ) X ) |
| 20 |
15 4
|
pltval |
|- ( ( R e. oRing /\ .0. e. B /\ Y e. B ) -> ( .0. .< Y <-> ( .0. ( le ` R ) Y /\ .0. =/= Y ) ) ) |
| 21 |
5 14 8 20
|
syl3anc |
|- ( ph -> ( .0. .< Y <-> ( .0. ( le ` R ) Y /\ .0. =/= Y ) ) ) |
| 22 |
10 21
|
mpbid |
|- ( ph -> ( .0. ( le ` R ) Y /\ .0. =/= Y ) ) |
| 23 |
22
|
simpld |
|- ( ph -> .0. ( le ` R ) Y ) |
| 24 |
1 15 3 2
|
orngmul |
|- ( ( R e. oRing /\ ( X e. B /\ .0. ( le ` R ) X ) /\ ( Y e. B /\ .0. ( le ` R ) Y ) ) -> .0. ( le ` R ) ( X .x. Y ) ) |
| 25 |
5 7 19 8 23 24
|
syl122anc |
|- ( ph -> .0. ( le ` R ) ( X .x. Y ) ) |
| 26 |
18
|
simprd |
|- ( ph -> .0. =/= X ) |
| 27 |
26
|
necomd |
|- ( ph -> X =/= .0. ) |
| 28 |
22
|
simprd |
|- ( ph -> .0. =/= Y ) |
| 29 |
28
|
necomd |
|- ( ph -> Y =/= .0. ) |
| 30 |
1 3 2 6 7 8
|
drngmulne0 |
|- ( ph -> ( ( X .x. Y ) =/= .0. <-> ( X =/= .0. /\ Y =/= .0. ) ) ) |
| 31 |
27 29 30
|
mpbir2and |
|- ( ph -> ( X .x. Y ) =/= .0. ) |
| 32 |
31
|
necomd |
|- ( ph -> .0. =/= ( X .x. Y ) ) |
| 33 |
5 11
|
syl |
|- ( ph -> R e. Ring ) |
| 34 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 35 |
33 7 8 34
|
syl3anc |
|- ( ph -> ( X .x. Y ) e. B ) |
| 36 |
15 4
|
pltval |
|- ( ( R e. oRing /\ .0. e. B /\ ( X .x. Y ) e. B ) -> ( .0. .< ( X .x. Y ) <-> ( .0. ( le ` R ) ( X .x. Y ) /\ .0. =/= ( X .x. Y ) ) ) ) |
| 37 |
5 14 35 36
|
syl3anc |
|- ( ph -> ( .0. .< ( X .x. Y ) <-> ( .0. ( le ` R ) ( X .x. Y ) /\ .0. =/= ( X .x. Y ) ) ) ) |
| 38 |
25 32 37
|
mpbir2and |
|- ( ph -> .0. .< ( X .x. Y ) ) |