| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ornglmullt.b |
|- B = ( Base ` R ) |
| 2 |
|
ornglmullt.t |
|- .x. = ( .r ` R ) |
| 3 |
|
ornglmullt.0 |
|- .0. = ( 0g ` R ) |
| 4 |
|
ornglmullt.1 |
|- ( ph -> R e. oRing ) |
| 5 |
|
ornglmullt.2 |
|- ( ph -> X e. B ) |
| 6 |
|
ornglmullt.3 |
|- ( ph -> Y e. B ) |
| 7 |
|
ornglmullt.4 |
|- ( ph -> Z e. B ) |
| 8 |
|
ornglmullt.l |
|- .< = ( lt ` R ) |
| 9 |
|
ornglmullt.d |
|- ( ph -> R e. DivRing ) |
| 10 |
|
ornglmullt.5 |
|- ( ph -> X .< Y ) |
| 11 |
|
ornglmullt.6 |
|- ( ph -> .0. .< Z ) |
| 12 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
| 13 |
12 8
|
pltle |
|- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X ( le ` R ) Y ) ) |
| 14 |
13
|
imp |
|- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X ( le ` R ) Y ) |
| 15 |
4 5 6 10 14
|
syl31anc |
|- ( ph -> X ( le ` R ) Y ) |
| 16 |
|
orngring |
|- ( R e. oRing -> R e. Ring ) |
| 17 |
4 16
|
syl |
|- ( ph -> R e. Ring ) |
| 18 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 19 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
| 20 |
17 18 19
|
3syl |
|- ( ph -> .0. e. B ) |
| 21 |
12 8
|
pltle |
|- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. ( le ` R ) Z ) ) |
| 22 |
21
|
imp |
|- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. ( le ` R ) Z ) |
| 23 |
4 20 7 11 22
|
syl31anc |
|- ( ph -> .0. ( le ` R ) Z ) |
| 24 |
1 2 3 4 5 6 7 12 15 23
|
orngrmulle |
|- ( ph -> ( X .x. Z ) ( le ` R ) ( Y .x. Z ) ) |
| 25 |
|
simpr |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( X .x. Z ) = ( Y .x. Z ) ) |
| 26 |
25
|
oveq1d |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( ( X .x. Z ) ( /r ` R ) Z ) = ( ( Y .x. Z ) ( /r ` R ) Z ) ) |
| 27 |
8
|
pltne |
|- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. =/= Z ) ) |
| 28 |
27
|
imp |
|- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. =/= Z ) |
| 29 |
4 20 7 11 28
|
syl31anc |
|- ( ph -> .0. =/= Z ) |
| 30 |
29
|
necomd |
|- ( ph -> Z =/= .0. ) |
| 31 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 32 |
1 31 3
|
drngunit |
|- ( R e. DivRing -> ( Z e. ( Unit ` R ) <-> ( Z e. B /\ Z =/= .0. ) ) ) |
| 33 |
32
|
biimpar |
|- ( ( R e. DivRing /\ ( Z e. B /\ Z =/= .0. ) ) -> Z e. ( Unit ` R ) ) |
| 34 |
9 7 30 33
|
syl12anc |
|- ( ph -> Z e. ( Unit ` R ) ) |
| 35 |
|
eqid |
|- ( /r ` R ) = ( /r ` R ) |
| 36 |
1 31 35 2
|
dvrcan3 |
|- ( ( R e. Ring /\ X e. B /\ Z e. ( Unit ` R ) ) -> ( ( X .x. Z ) ( /r ` R ) Z ) = X ) |
| 37 |
17 5 34 36
|
syl3anc |
|- ( ph -> ( ( X .x. Z ) ( /r ` R ) Z ) = X ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( ( X .x. Z ) ( /r ` R ) Z ) = X ) |
| 39 |
1 31 35 2
|
dvrcan3 |
|- ( ( R e. Ring /\ Y e. B /\ Z e. ( Unit ` R ) ) -> ( ( Y .x. Z ) ( /r ` R ) Z ) = Y ) |
| 40 |
17 6 34 39
|
syl3anc |
|- ( ph -> ( ( Y .x. Z ) ( /r ` R ) Z ) = Y ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( ( Y .x. Z ) ( /r ` R ) Z ) = Y ) |
| 42 |
26 38 41
|
3eqtr3d |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> X = Y ) |
| 43 |
8
|
pltne |
|- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X =/= Y ) ) |
| 44 |
43
|
imp |
|- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X =/= Y ) |
| 45 |
4 5 6 10 44
|
syl31anc |
|- ( ph -> X =/= Y ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> X =/= Y ) |
| 47 |
46
|
neneqd |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> -. X = Y ) |
| 48 |
42 47
|
pm2.65da |
|- ( ph -> -. ( X .x. Z ) = ( Y .x. Z ) ) |
| 49 |
48
|
neqned |
|- ( ph -> ( X .x. Z ) =/= ( Y .x. Z ) ) |
| 50 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ Z e. B ) -> ( X .x. Z ) e. B ) |
| 51 |
17 5 7 50
|
syl3anc |
|- ( ph -> ( X .x. Z ) e. B ) |
| 52 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ Y e. B /\ Z e. B ) -> ( Y .x. Z ) e. B ) |
| 53 |
17 6 7 52
|
syl3anc |
|- ( ph -> ( Y .x. Z ) e. B ) |
| 54 |
12 8
|
pltval |
|- ( ( R e. oRing /\ ( X .x. Z ) e. B /\ ( Y .x. Z ) e. B ) -> ( ( X .x. Z ) .< ( Y .x. Z ) <-> ( ( X .x. Z ) ( le ` R ) ( Y .x. Z ) /\ ( X .x. Z ) =/= ( Y .x. Z ) ) ) ) |
| 55 |
4 51 53 54
|
syl3anc |
|- ( ph -> ( ( X .x. Z ) .< ( Y .x. Z ) <-> ( ( X .x. Z ) ( le ` R ) ( Y .x. Z ) /\ ( X .x. Z ) =/= ( Y .x. Z ) ) ) ) |
| 56 |
24 49 55
|
mpbir2and |
|- ( ph -> ( X .x. Z ) .< ( Y .x. Z ) ) |