Step |
Hyp |
Ref |
Expression |
1 |
|
ornglmullt.b |
|- B = ( Base ` R ) |
2 |
|
ornglmullt.t |
|- .x. = ( .r ` R ) |
3 |
|
ornglmullt.0 |
|- .0. = ( 0g ` R ) |
4 |
|
ornglmullt.1 |
|- ( ph -> R e. oRing ) |
5 |
|
ornglmullt.2 |
|- ( ph -> X e. B ) |
6 |
|
ornglmullt.3 |
|- ( ph -> Y e. B ) |
7 |
|
ornglmullt.4 |
|- ( ph -> Z e. B ) |
8 |
|
ornglmullt.l |
|- .< = ( lt ` R ) |
9 |
|
ornglmullt.d |
|- ( ph -> R e. DivRing ) |
10 |
|
ornglmullt.5 |
|- ( ph -> X .< Y ) |
11 |
|
ornglmullt.6 |
|- ( ph -> .0. .< Z ) |
12 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
13 |
12 8
|
pltle |
|- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X ( le ` R ) Y ) ) |
14 |
13
|
imp |
|- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X ( le ` R ) Y ) |
15 |
4 5 6 10 14
|
syl31anc |
|- ( ph -> X ( le ` R ) Y ) |
16 |
|
orngring |
|- ( R e. oRing -> R e. Ring ) |
17 |
4 16
|
syl |
|- ( ph -> R e. Ring ) |
18 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
19 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
20 |
17 18 19
|
3syl |
|- ( ph -> .0. e. B ) |
21 |
12 8
|
pltle |
|- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. ( le ` R ) Z ) ) |
22 |
21
|
imp |
|- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. ( le ` R ) Z ) |
23 |
4 20 7 11 22
|
syl31anc |
|- ( ph -> .0. ( le ` R ) Z ) |
24 |
1 2 3 4 5 6 7 12 15 23
|
orngrmulle |
|- ( ph -> ( X .x. Z ) ( le ` R ) ( Y .x. Z ) ) |
25 |
|
simpr |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( X .x. Z ) = ( Y .x. Z ) ) |
26 |
25
|
oveq1d |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( ( X .x. Z ) ( /r ` R ) Z ) = ( ( Y .x. Z ) ( /r ` R ) Z ) ) |
27 |
8
|
pltne |
|- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. =/= Z ) ) |
28 |
27
|
imp |
|- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. =/= Z ) |
29 |
4 20 7 11 28
|
syl31anc |
|- ( ph -> .0. =/= Z ) |
30 |
29
|
necomd |
|- ( ph -> Z =/= .0. ) |
31 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
32 |
1 31 3
|
drngunit |
|- ( R e. DivRing -> ( Z e. ( Unit ` R ) <-> ( Z e. B /\ Z =/= .0. ) ) ) |
33 |
32
|
biimpar |
|- ( ( R e. DivRing /\ ( Z e. B /\ Z =/= .0. ) ) -> Z e. ( Unit ` R ) ) |
34 |
9 7 30 33
|
syl12anc |
|- ( ph -> Z e. ( Unit ` R ) ) |
35 |
|
eqid |
|- ( /r ` R ) = ( /r ` R ) |
36 |
1 31 35 2
|
dvrcan3 |
|- ( ( R e. Ring /\ X e. B /\ Z e. ( Unit ` R ) ) -> ( ( X .x. Z ) ( /r ` R ) Z ) = X ) |
37 |
17 5 34 36
|
syl3anc |
|- ( ph -> ( ( X .x. Z ) ( /r ` R ) Z ) = X ) |
38 |
37
|
adantr |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( ( X .x. Z ) ( /r ` R ) Z ) = X ) |
39 |
1 31 35 2
|
dvrcan3 |
|- ( ( R e. Ring /\ Y e. B /\ Z e. ( Unit ` R ) ) -> ( ( Y .x. Z ) ( /r ` R ) Z ) = Y ) |
40 |
17 6 34 39
|
syl3anc |
|- ( ph -> ( ( Y .x. Z ) ( /r ` R ) Z ) = Y ) |
41 |
40
|
adantr |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( ( Y .x. Z ) ( /r ` R ) Z ) = Y ) |
42 |
26 38 41
|
3eqtr3d |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> X = Y ) |
43 |
8
|
pltne |
|- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X =/= Y ) ) |
44 |
43
|
imp |
|- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X =/= Y ) |
45 |
4 5 6 10 44
|
syl31anc |
|- ( ph -> X =/= Y ) |
46 |
45
|
adantr |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> X =/= Y ) |
47 |
46
|
neneqd |
|- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> -. X = Y ) |
48 |
42 47
|
pm2.65da |
|- ( ph -> -. ( X .x. Z ) = ( Y .x. Z ) ) |
49 |
48
|
neqned |
|- ( ph -> ( X .x. Z ) =/= ( Y .x. Z ) ) |
50 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ Z e. B ) -> ( X .x. Z ) e. B ) |
51 |
17 5 7 50
|
syl3anc |
|- ( ph -> ( X .x. Z ) e. B ) |
52 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ Y e. B /\ Z e. B ) -> ( Y .x. Z ) e. B ) |
53 |
17 6 7 52
|
syl3anc |
|- ( ph -> ( Y .x. Z ) e. B ) |
54 |
12 8
|
pltval |
|- ( ( R e. oRing /\ ( X .x. Z ) e. B /\ ( Y .x. Z ) e. B ) -> ( ( X .x. Z ) .< ( Y .x. Z ) <-> ( ( X .x. Z ) ( le ` R ) ( Y .x. Z ) /\ ( X .x. Z ) =/= ( Y .x. Z ) ) ) ) |
55 |
4 51 53 54
|
syl3anc |
|- ( ph -> ( ( X .x. Z ) .< ( Y .x. Z ) <-> ( ( X .x. Z ) ( le ` R ) ( Y .x. Z ) /\ ( X .x. Z ) =/= ( Y .x. Z ) ) ) ) |
56 |
24 49 55
|
mpbir2and |
|- ( ph -> ( X .x. Z ) .< ( Y .x. Z ) ) |