| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ornglmullt.b |
|
| 2 |
|
ornglmullt.t |
|
| 3 |
|
ornglmullt.0 |
|
| 4 |
|
ornglmullt.1 |
|
| 5 |
|
ornglmullt.2 |
|
| 6 |
|
ornglmullt.3 |
|
| 7 |
|
ornglmullt.4 |
|
| 8 |
|
ornglmullt.l |
|
| 9 |
|
ornglmullt.d |
|
| 10 |
|
ornglmullt.5 |
|
| 11 |
|
ornglmullt.6 |
|
| 12 |
|
eqid |
|
| 13 |
12 8
|
pltle |
|
| 14 |
13
|
imp |
|
| 15 |
4 5 6 10 14
|
syl31anc |
|
| 16 |
|
orngring |
|
| 17 |
4 16
|
syl |
|
| 18 |
|
ringgrp |
|
| 19 |
1 3
|
grpidcl |
|
| 20 |
17 18 19
|
3syl |
|
| 21 |
12 8
|
pltle |
|
| 22 |
21
|
imp |
|
| 23 |
4 20 7 11 22
|
syl31anc |
|
| 24 |
1 2 3 4 5 6 7 12 15 23
|
orngrmulle |
|
| 25 |
|
simpr |
|
| 26 |
25
|
oveq1d |
|
| 27 |
8
|
pltne |
|
| 28 |
27
|
imp |
|
| 29 |
4 20 7 11 28
|
syl31anc |
|
| 30 |
29
|
necomd |
|
| 31 |
|
eqid |
|
| 32 |
1 31 3
|
drngunit |
|
| 33 |
32
|
biimpar |
|
| 34 |
9 7 30 33
|
syl12anc |
|
| 35 |
|
eqid |
|
| 36 |
1 31 35 2
|
dvrcan3 |
|
| 37 |
17 5 34 36
|
syl3anc |
|
| 38 |
37
|
adantr |
|
| 39 |
1 31 35 2
|
dvrcan3 |
|
| 40 |
17 6 34 39
|
syl3anc |
|
| 41 |
40
|
adantr |
|
| 42 |
26 38 41
|
3eqtr3d |
|
| 43 |
8
|
pltne |
|
| 44 |
43
|
imp |
|
| 45 |
4 5 6 10 44
|
syl31anc |
|
| 46 |
45
|
adantr |
|
| 47 |
46
|
neneqd |
|
| 48 |
42 47
|
pm2.65da |
|
| 49 |
48
|
neqned |
|
| 50 |
1 2
|
ringcl |
|
| 51 |
17 5 7 50
|
syl3anc |
|
| 52 |
1 2
|
ringcl |
|
| 53 |
17 6 7 52
|
syl3anc |
|
| 54 |
12 8
|
pltval |
|
| 55 |
4 51 53 54
|
syl3anc |
|
| 56 |
24 49 55
|
mpbir2and |
|