Step |
Hyp |
Ref |
Expression |
1 |
|
ornglmullt.b |
|
2 |
|
ornglmullt.t |
|
3 |
|
ornglmullt.0 |
|
4 |
|
ornglmullt.1 |
|
5 |
|
ornglmullt.2 |
|
6 |
|
ornglmullt.3 |
|
7 |
|
ornglmullt.4 |
|
8 |
|
orngmulle.l |
|
9 |
|
orngmulle.5 |
|
10 |
|
orngmulle.6 |
|
11 |
|
orngogrp |
|
12 |
4 11
|
syl |
|
13 |
|
isogrp |
|
14 |
13
|
simprbi |
|
15 |
12 14
|
syl |
|
16 |
|
orngring |
|
17 |
4 16
|
syl |
|
18 |
|
ringgrp |
|
19 |
17 18
|
syl |
|
20 |
1 3
|
grpidcl |
|
21 |
19 20
|
syl |
|
22 |
1 2
|
ringcl |
|
23 |
17 6 7 22
|
syl3anc |
|
24 |
1 2
|
ringcl |
|
25 |
17 5 7 24
|
syl3anc |
|
26 |
|
eqid |
|
27 |
1 26
|
grpsubcl |
|
28 |
19 23 25 27
|
syl3anc |
|
29 |
1 26
|
grpsubcl |
|
30 |
19 6 5 29
|
syl3anc |
|
31 |
1 3 26
|
grpsubid |
|
32 |
19 5 31
|
syl2anc |
|
33 |
1 8 26
|
ogrpsub |
|
34 |
12 5 6 5 9 33
|
syl131anc |
|
35 |
32 34
|
eqbrtrrd |
|
36 |
1 8 3 2
|
orngmul |
|
37 |
4 30 35 7 10 36
|
syl122anc |
|
38 |
1 2 26 17 6 5 7
|
rngsubdir |
|
39 |
37 38
|
breqtrd |
|
40 |
|
eqid |
|
41 |
1 8 40
|
omndadd |
|
42 |
15 21 28 25 39 41
|
syl131anc |
|
43 |
1 40 3
|
grplid |
|
44 |
19 25 43
|
syl2anc |
|
45 |
1 40 26
|
grpnpcan |
|
46 |
19 23 25 45
|
syl3anc |
|
47 |
42 44 46
|
3brtr3d |
|