| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ornglmullt.b |
|
| 2 |
|
ornglmullt.t |
|
| 3 |
|
ornglmullt.0 |
|
| 4 |
|
ornglmullt.1 |
|
| 5 |
|
ornglmullt.2 |
|
| 6 |
|
ornglmullt.3 |
|
| 7 |
|
ornglmullt.4 |
|
| 8 |
|
orngmulle.l |
|
| 9 |
|
orngmulle.5 |
|
| 10 |
|
orngmulle.6 |
|
| 11 |
|
orngogrp |
|
| 12 |
4 11
|
syl |
|
| 13 |
|
isogrp |
|
| 14 |
13
|
simprbi |
|
| 15 |
12 14
|
syl |
|
| 16 |
|
orngring |
|
| 17 |
4 16
|
syl |
|
| 18 |
|
ringgrp |
|
| 19 |
17 18
|
syl |
|
| 20 |
1 3
|
grpidcl |
|
| 21 |
19 20
|
syl |
|
| 22 |
1 2
|
ringcl |
|
| 23 |
17 6 7 22
|
syl3anc |
|
| 24 |
1 2
|
ringcl |
|
| 25 |
17 5 7 24
|
syl3anc |
|
| 26 |
|
eqid |
|
| 27 |
1 26
|
grpsubcl |
|
| 28 |
19 23 25 27
|
syl3anc |
|
| 29 |
1 26
|
grpsubcl |
|
| 30 |
19 6 5 29
|
syl3anc |
|
| 31 |
1 3 26
|
grpsubid |
|
| 32 |
19 5 31
|
syl2anc |
|
| 33 |
1 8 26
|
ogrpsub |
|
| 34 |
12 5 6 5 9 33
|
syl131anc |
|
| 35 |
32 34
|
eqbrtrrd |
|
| 36 |
1 8 3 2
|
orngmul |
|
| 37 |
4 30 35 7 10 36
|
syl122anc |
|
| 38 |
1 2 26 17 6 5 7
|
ringsubdir |
|
| 39 |
37 38
|
breqtrd |
|
| 40 |
|
eqid |
|
| 41 |
1 8 40
|
omndadd |
|
| 42 |
15 21 28 25 39 41
|
syl131anc |
|
| 43 |
1 40 3
|
grplid |
|
| 44 |
19 25 43
|
syl2anc |
|
| 45 |
1 40 26
|
grpnpcan |
|
| 46 |
19 23 25 45
|
syl3anc |
|
| 47 |
42 44 46
|
3brtr3d |
|