Metamath Proof Explorer


Theorem ornglmullt

Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018)

Ref Expression
Hypotheses ornglmullt.b B=BaseR
ornglmullt.t ·˙=R
ornglmullt.0 0˙=0R
ornglmullt.1 φRoRing
ornglmullt.2 φXB
ornglmullt.3 φYB
ornglmullt.4 φZB
ornglmullt.l <˙=<R
ornglmullt.d φRDivRing
ornglmullt.5 φX<˙Y
ornglmullt.6 φ0˙<˙Z
Assertion ornglmullt φZ·˙X<˙Z·˙Y

Proof

Step Hyp Ref Expression
1 ornglmullt.b B=BaseR
2 ornglmullt.t ·˙=R
3 ornglmullt.0 0˙=0R
4 ornglmullt.1 φRoRing
5 ornglmullt.2 φXB
6 ornglmullt.3 φYB
7 ornglmullt.4 φZB
8 ornglmullt.l <˙=<R
9 ornglmullt.d φRDivRing
10 ornglmullt.5 φX<˙Y
11 ornglmullt.6 φ0˙<˙Z
12 eqid R=R
13 12 8 pltle RoRingXBYBX<˙YXRY
14 13 imp RoRingXBYBX<˙YXRY
15 4 5 6 10 14 syl31anc φXRY
16 orngring RoRingRRing
17 4 16 syl φRRing
18 ringgrp RRingRGrp
19 1 3 grpidcl RGrp0˙B
20 17 18 19 3syl φ0˙B
21 12 8 pltle RoRing0˙BZB0˙<˙Z0˙RZ
22 21 imp RoRing0˙BZB0˙<˙Z0˙RZ
23 4 20 7 11 22 syl31anc φ0˙RZ
24 1 2 3 4 5 6 7 12 15 23 ornglmulle φZ·˙XRZ·˙Y
25 simpr φZ·˙X=Z·˙YZ·˙X=Z·˙Y
26 25 oveq2d φZ·˙X=Z·˙YinvrRZ·˙Z·˙X=invrRZ·˙Z·˙Y
27 8 pltne RoRing0˙BZB0˙<˙Z0˙Z
28 27 imp RoRing0˙BZB0˙<˙Z0˙Z
29 4 20 7 11 28 syl31anc φ0˙Z
30 29 necomd φZ0˙
31 eqid UnitR=UnitR
32 1 31 3 drngunit RDivRingZUnitRZBZ0˙
33 32 biimpar RDivRingZBZ0˙ZUnitR
34 9 7 30 33 syl12anc φZUnitR
35 eqid invrR=invrR
36 eqid 1R=1R
37 31 35 2 36 unitlinv RRingZUnitRinvrRZ·˙Z=1R
38 17 34 37 syl2anc φinvrRZ·˙Z=1R
39 38 oveq1d φinvrRZ·˙Z·˙X=1R·˙X
40 31 35 1 ringinvcl RRingZUnitRinvrRZB
41 17 34 40 syl2anc φinvrRZB
42 1 2 ringass RRinginvrRZBZBXBinvrRZ·˙Z·˙X=invrRZ·˙Z·˙X
43 17 41 7 5 42 syl13anc φinvrRZ·˙Z·˙X=invrRZ·˙Z·˙X
44 1 2 36 ringlidm RRingXB1R·˙X=X
45 17 5 44 syl2anc φ1R·˙X=X
46 39 43 45 3eqtr3d φinvrRZ·˙Z·˙X=X
47 46 adantr φZ·˙X=Z·˙YinvrRZ·˙Z·˙X=X
48 38 oveq1d φinvrRZ·˙Z·˙Y=1R·˙Y
49 1 2 ringass RRinginvrRZBZBYBinvrRZ·˙Z·˙Y=invrRZ·˙Z·˙Y
50 17 41 7 6 49 syl13anc φinvrRZ·˙Z·˙Y=invrRZ·˙Z·˙Y
51 1 2 36 ringlidm RRingYB1R·˙Y=Y
52 17 6 51 syl2anc φ1R·˙Y=Y
53 48 50 52 3eqtr3d φinvrRZ·˙Z·˙Y=Y
54 53 adantr φZ·˙X=Z·˙YinvrRZ·˙Z·˙Y=Y
55 26 47 54 3eqtr3d φZ·˙X=Z·˙YX=Y
56 8 pltne RoRingXBYBX<˙YXY
57 56 imp RoRingXBYBX<˙YXY
58 4 5 6 10 57 syl31anc φXY
59 58 adantr φZ·˙X=Z·˙YXY
60 59 neneqd φZ·˙X=Z·˙Y¬X=Y
61 55 60 pm2.65da φ¬Z·˙X=Z·˙Y
62 61 neqned φZ·˙XZ·˙Y
63 1 2 ringcl RRingZBXBZ·˙XB
64 17 7 5 63 syl3anc φZ·˙XB
65 1 2 ringcl RRingZBYBZ·˙YB
66 17 7 6 65 syl3anc φZ·˙YB
67 12 8 pltval RoRingZ·˙XBZ·˙YBZ·˙X<˙Z·˙YZ·˙XRZ·˙YZ·˙XZ·˙Y
68 4 64 66 67 syl3anc φZ·˙X<˙Z·˙YZ·˙XRZ·˙YZ·˙XZ·˙Y
69 24 62 68 mpbir2and φZ·˙X<˙Z·˙Y