| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ornglmullt.b |
|
| 2 |
|
ornglmullt.t |
|
| 3 |
|
ornglmullt.0 |
|
| 4 |
|
ornglmullt.1 |
|
| 5 |
|
ornglmullt.2 |
|
| 6 |
|
ornglmullt.3 |
|
| 7 |
|
ornglmullt.4 |
|
| 8 |
|
ornglmullt.l |
|
| 9 |
|
ornglmullt.d |
|
| 10 |
|
ornglmullt.5 |
|
| 11 |
|
ornglmullt.6 |
|
| 12 |
|
eqid |
|
| 13 |
12 8
|
pltle |
|
| 14 |
13
|
imp |
|
| 15 |
4 5 6 10 14
|
syl31anc |
|
| 16 |
|
orngring |
|
| 17 |
4 16
|
syl |
|
| 18 |
|
ringgrp |
|
| 19 |
1 3
|
grpidcl |
|
| 20 |
17 18 19
|
3syl |
|
| 21 |
12 8
|
pltle |
|
| 22 |
21
|
imp |
|
| 23 |
4 20 7 11 22
|
syl31anc |
|
| 24 |
1 2 3 4 5 6 7 12 15 23
|
ornglmulle |
|
| 25 |
|
simpr |
|
| 26 |
25
|
oveq2d |
|
| 27 |
8
|
pltne |
|
| 28 |
27
|
imp |
|
| 29 |
4 20 7 11 28
|
syl31anc |
|
| 30 |
29
|
necomd |
|
| 31 |
|
eqid |
|
| 32 |
1 31 3
|
drngunit |
|
| 33 |
32
|
biimpar |
|
| 34 |
9 7 30 33
|
syl12anc |
|
| 35 |
|
eqid |
|
| 36 |
|
eqid |
|
| 37 |
31 35 2 36
|
unitlinv |
|
| 38 |
17 34 37
|
syl2anc |
|
| 39 |
38
|
oveq1d |
|
| 40 |
31 35 1
|
ringinvcl |
|
| 41 |
17 34 40
|
syl2anc |
|
| 42 |
1 2
|
ringass |
|
| 43 |
17 41 7 5 42
|
syl13anc |
|
| 44 |
1 2 36
|
ringlidm |
|
| 45 |
17 5 44
|
syl2anc |
|
| 46 |
39 43 45
|
3eqtr3d |
|
| 47 |
46
|
adantr |
|
| 48 |
38
|
oveq1d |
|
| 49 |
1 2
|
ringass |
|
| 50 |
17 41 7 6 49
|
syl13anc |
|
| 51 |
1 2 36
|
ringlidm |
|
| 52 |
17 6 51
|
syl2anc |
|
| 53 |
48 50 52
|
3eqtr3d |
|
| 54 |
53
|
adantr |
|
| 55 |
26 47 54
|
3eqtr3d |
|
| 56 |
8
|
pltne |
|
| 57 |
56
|
imp |
|
| 58 |
4 5 6 10 57
|
syl31anc |
|
| 59 |
58
|
adantr |
|
| 60 |
59
|
neneqd |
|
| 61 |
55 60
|
pm2.65da |
|
| 62 |
61
|
neqned |
|
| 63 |
1 2
|
ringcl |
|
| 64 |
17 7 5 63
|
syl3anc |
|
| 65 |
1 2
|
ringcl |
|
| 66 |
17 7 6 65
|
syl3anc |
|
| 67 |
12 8
|
pltval |
|
| 68 |
4 64 66 67
|
syl3anc |
|
| 69 |
24 62 68
|
mpbir2and |
|