Step |
Hyp |
Ref |
Expression |
1 |
|
ornglmullt.b |
|
2 |
|
ornglmullt.t |
|
3 |
|
ornglmullt.0 |
|
4 |
|
ornglmullt.1 |
|
5 |
|
ornglmullt.2 |
|
6 |
|
ornglmullt.3 |
|
7 |
|
ornglmullt.4 |
|
8 |
|
ornglmullt.l |
|
9 |
|
ornglmullt.d |
|
10 |
|
ornglmullt.5 |
|
11 |
|
ornglmullt.6 |
|
12 |
|
eqid |
|
13 |
12 8
|
pltle |
|
14 |
13
|
imp |
|
15 |
4 5 6 10 14
|
syl31anc |
|
16 |
|
orngring |
|
17 |
4 16
|
syl |
|
18 |
|
ringgrp |
|
19 |
1 3
|
grpidcl |
|
20 |
17 18 19
|
3syl |
|
21 |
12 8
|
pltle |
|
22 |
21
|
imp |
|
23 |
4 20 7 11 22
|
syl31anc |
|
24 |
1 2 3 4 5 6 7 12 15 23
|
ornglmulle |
|
25 |
|
simpr |
|
26 |
25
|
oveq2d |
|
27 |
8
|
pltne |
|
28 |
27
|
imp |
|
29 |
4 20 7 11 28
|
syl31anc |
|
30 |
29
|
necomd |
|
31 |
|
eqid |
|
32 |
1 31 3
|
drngunit |
|
33 |
32
|
biimpar |
|
34 |
9 7 30 33
|
syl12anc |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
31 35 2 36
|
unitlinv |
|
38 |
17 34 37
|
syl2anc |
|
39 |
38
|
oveq1d |
|
40 |
31 35 1
|
ringinvcl |
|
41 |
17 34 40
|
syl2anc |
|
42 |
1 2
|
ringass |
|
43 |
17 41 7 5 42
|
syl13anc |
|
44 |
1 2 36
|
ringlidm |
|
45 |
17 5 44
|
syl2anc |
|
46 |
39 43 45
|
3eqtr3d |
|
47 |
46
|
adantr |
|
48 |
38
|
oveq1d |
|
49 |
1 2
|
ringass |
|
50 |
17 41 7 6 49
|
syl13anc |
|
51 |
1 2 36
|
ringlidm |
|
52 |
17 6 51
|
syl2anc |
|
53 |
48 50 52
|
3eqtr3d |
|
54 |
53
|
adantr |
|
55 |
26 47 54
|
3eqtr3d |
|
56 |
8
|
pltne |
|
57 |
56
|
imp |
|
58 |
4 5 6 10 57
|
syl31anc |
|
59 |
58
|
adantr |
|
60 |
59
|
neneqd |
|
61 |
55 60
|
pm2.65da |
|
62 |
61
|
neqned |
|
63 |
1 2
|
ringcl |
|
64 |
17 7 5 63
|
syl3anc |
|
65 |
1 2
|
ringcl |
|
66 |
17 7 6 65
|
syl3anc |
|
67 |
12 8
|
pltval |
|
68 |
4 64 66 67
|
syl3anc |
|
69 |
24 62 68
|
mpbir2and |
|