Step |
Hyp |
Ref |
Expression |
1 |
|
ornglmullt.b |
|- B = ( Base ` R ) |
2 |
|
ornglmullt.t |
|- .x. = ( .r ` R ) |
3 |
|
ornglmullt.0 |
|- .0. = ( 0g ` R ) |
4 |
|
ornglmullt.1 |
|- ( ph -> R e. oRing ) |
5 |
|
ornglmullt.2 |
|- ( ph -> X e. B ) |
6 |
|
ornglmullt.3 |
|- ( ph -> Y e. B ) |
7 |
|
ornglmullt.4 |
|- ( ph -> Z e. B ) |
8 |
|
ornglmullt.l |
|- .< = ( lt ` R ) |
9 |
|
ornglmullt.d |
|- ( ph -> R e. DivRing ) |
10 |
|
ornglmullt.5 |
|- ( ph -> X .< Y ) |
11 |
|
ornglmullt.6 |
|- ( ph -> .0. .< Z ) |
12 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
13 |
12 8
|
pltle |
|- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X ( le ` R ) Y ) ) |
14 |
13
|
imp |
|- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X ( le ` R ) Y ) |
15 |
4 5 6 10 14
|
syl31anc |
|- ( ph -> X ( le ` R ) Y ) |
16 |
|
orngring |
|- ( R e. oRing -> R e. Ring ) |
17 |
4 16
|
syl |
|- ( ph -> R e. Ring ) |
18 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
19 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
20 |
17 18 19
|
3syl |
|- ( ph -> .0. e. B ) |
21 |
12 8
|
pltle |
|- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. ( le ` R ) Z ) ) |
22 |
21
|
imp |
|- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. ( le ` R ) Z ) |
23 |
4 20 7 11 22
|
syl31anc |
|- ( ph -> .0. ( le ` R ) Z ) |
24 |
1 2 3 4 5 6 7 12 15 23
|
ornglmulle |
|- ( ph -> ( Z .x. X ) ( le ` R ) ( Z .x. Y ) ) |
25 |
|
simpr |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( Z .x. X ) = ( Z .x. Y ) ) |
26 |
25
|
oveq2d |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) ) |
27 |
8
|
pltne |
|- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. =/= Z ) ) |
28 |
27
|
imp |
|- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. =/= Z ) |
29 |
4 20 7 11 28
|
syl31anc |
|- ( ph -> .0. =/= Z ) |
30 |
29
|
necomd |
|- ( ph -> Z =/= .0. ) |
31 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
32 |
1 31 3
|
drngunit |
|- ( R e. DivRing -> ( Z e. ( Unit ` R ) <-> ( Z e. B /\ Z =/= .0. ) ) ) |
33 |
32
|
biimpar |
|- ( ( R e. DivRing /\ ( Z e. B /\ Z =/= .0. ) ) -> Z e. ( Unit ` R ) ) |
34 |
9 7 30 33
|
syl12anc |
|- ( ph -> Z e. ( Unit ` R ) ) |
35 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
36 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
37 |
31 35 2 36
|
unitlinv |
|- ( ( R e. Ring /\ Z e. ( Unit ` R ) ) -> ( ( ( invr ` R ) ` Z ) .x. Z ) = ( 1r ` R ) ) |
38 |
17 34 37
|
syl2anc |
|- ( ph -> ( ( ( invr ` R ) ` Z ) .x. Z ) = ( 1r ` R ) ) |
39 |
38
|
oveq1d |
|- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. X ) = ( ( 1r ` R ) .x. X ) ) |
40 |
31 35 1
|
ringinvcl |
|- ( ( R e. Ring /\ Z e. ( Unit ` R ) ) -> ( ( invr ` R ) ` Z ) e. B ) |
41 |
17 34 40
|
syl2anc |
|- ( ph -> ( ( invr ` R ) ` Z ) e. B ) |
42 |
1 2
|
ringass |
|- ( ( R e. Ring /\ ( ( ( invr ` R ) ` Z ) e. B /\ Z e. B /\ X e. B ) ) -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. X ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) ) |
43 |
17 41 7 5 42
|
syl13anc |
|- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. X ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) ) |
44 |
1 2 36
|
ringlidm |
|- ( ( R e. Ring /\ X e. B ) -> ( ( 1r ` R ) .x. X ) = X ) |
45 |
17 5 44
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) .x. X ) = X ) |
46 |
39 43 45
|
3eqtr3d |
|- ( ph -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) = X ) |
47 |
46
|
adantr |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) = X ) |
48 |
38
|
oveq1d |
|- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. Y ) = ( ( 1r ` R ) .x. Y ) ) |
49 |
1 2
|
ringass |
|- ( ( R e. Ring /\ ( ( ( invr ` R ) ` Z ) e. B /\ Z e. B /\ Y e. B ) ) -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. Y ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) ) |
50 |
17 41 7 6 49
|
syl13anc |
|- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. Y ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) ) |
51 |
1 2 36
|
ringlidm |
|- ( ( R e. Ring /\ Y e. B ) -> ( ( 1r ` R ) .x. Y ) = Y ) |
52 |
17 6 51
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) .x. Y ) = Y ) |
53 |
48 50 52
|
3eqtr3d |
|- ( ph -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) = Y ) |
54 |
53
|
adantr |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) = Y ) |
55 |
26 47 54
|
3eqtr3d |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> X = Y ) |
56 |
8
|
pltne |
|- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X =/= Y ) ) |
57 |
56
|
imp |
|- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X =/= Y ) |
58 |
4 5 6 10 57
|
syl31anc |
|- ( ph -> X =/= Y ) |
59 |
58
|
adantr |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> X =/= Y ) |
60 |
59
|
neneqd |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> -. X = Y ) |
61 |
55 60
|
pm2.65da |
|- ( ph -> -. ( Z .x. X ) = ( Z .x. Y ) ) |
62 |
61
|
neqned |
|- ( ph -> ( Z .x. X ) =/= ( Z .x. Y ) ) |
63 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ Z e. B /\ X e. B ) -> ( Z .x. X ) e. B ) |
64 |
17 7 5 63
|
syl3anc |
|- ( ph -> ( Z .x. X ) e. B ) |
65 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ Z e. B /\ Y e. B ) -> ( Z .x. Y ) e. B ) |
66 |
17 7 6 65
|
syl3anc |
|- ( ph -> ( Z .x. Y ) e. B ) |
67 |
12 8
|
pltval |
|- ( ( R e. oRing /\ ( Z .x. X ) e. B /\ ( Z .x. Y ) e. B ) -> ( ( Z .x. X ) .< ( Z .x. Y ) <-> ( ( Z .x. X ) ( le ` R ) ( Z .x. Y ) /\ ( Z .x. X ) =/= ( Z .x. Y ) ) ) ) |
68 |
4 64 66 67
|
syl3anc |
|- ( ph -> ( ( Z .x. X ) .< ( Z .x. Y ) <-> ( ( Z .x. X ) ( le ` R ) ( Z .x. Y ) /\ ( Z .x. X ) =/= ( Z .x. Y ) ) ) ) |
69 |
24 62 68
|
mpbir2and |
|- ( ph -> ( Z .x. X ) .< ( Z .x. Y ) ) |