| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ornglmullt.b |
|- B = ( Base ` R ) |
| 2 |
|
ornglmullt.t |
|- .x. = ( .r ` R ) |
| 3 |
|
ornglmullt.0 |
|- .0. = ( 0g ` R ) |
| 4 |
|
ornglmullt.1 |
|- ( ph -> R e. oRing ) |
| 5 |
|
ornglmullt.2 |
|- ( ph -> X e. B ) |
| 6 |
|
ornglmullt.3 |
|- ( ph -> Y e. B ) |
| 7 |
|
ornglmullt.4 |
|- ( ph -> Z e. B ) |
| 8 |
|
ornglmullt.l |
|- .< = ( lt ` R ) |
| 9 |
|
ornglmullt.d |
|- ( ph -> R e. DivRing ) |
| 10 |
|
ornglmullt.5 |
|- ( ph -> X .< Y ) |
| 11 |
|
ornglmullt.6 |
|- ( ph -> .0. .< Z ) |
| 12 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
| 13 |
12 8
|
pltle |
|- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X ( le ` R ) Y ) ) |
| 14 |
13
|
imp |
|- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X ( le ` R ) Y ) |
| 15 |
4 5 6 10 14
|
syl31anc |
|- ( ph -> X ( le ` R ) Y ) |
| 16 |
|
orngring |
|- ( R e. oRing -> R e. Ring ) |
| 17 |
4 16
|
syl |
|- ( ph -> R e. Ring ) |
| 18 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 19 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
| 20 |
17 18 19
|
3syl |
|- ( ph -> .0. e. B ) |
| 21 |
12 8
|
pltle |
|- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. ( le ` R ) Z ) ) |
| 22 |
21
|
imp |
|- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. ( le ` R ) Z ) |
| 23 |
4 20 7 11 22
|
syl31anc |
|- ( ph -> .0. ( le ` R ) Z ) |
| 24 |
1 2 3 4 5 6 7 12 15 23
|
ornglmulle |
|- ( ph -> ( Z .x. X ) ( le ` R ) ( Z .x. Y ) ) |
| 25 |
|
simpr |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( Z .x. X ) = ( Z .x. Y ) ) |
| 26 |
25
|
oveq2d |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) ) |
| 27 |
8
|
pltne |
|- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. =/= Z ) ) |
| 28 |
27
|
imp |
|- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. =/= Z ) |
| 29 |
4 20 7 11 28
|
syl31anc |
|- ( ph -> .0. =/= Z ) |
| 30 |
29
|
necomd |
|- ( ph -> Z =/= .0. ) |
| 31 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 32 |
1 31 3
|
drngunit |
|- ( R e. DivRing -> ( Z e. ( Unit ` R ) <-> ( Z e. B /\ Z =/= .0. ) ) ) |
| 33 |
32
|
biimpar |
|- ( ( R e. DivRing /\ ( Z e. B /\ Z =/= .0. ) ) -> Z e. ( Unit ` R ) ) |
| 34 |
9 7 30 33
|
syl12anc |
|- ( ph -> Z e. ( Unit ` R ) ) |
| 35 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 36 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 37 |
31 35 2 36
|
unitlinv |
|- ( ( R e. Ring /\ Z e. ( Unit ` R ) ) -> ( ( ( invr ` R ) ` Z ) .x. Z ) = ( 1r ` R ) ) |
| 38 |
17 34 37
|
syl2anc |
|- ( ph -> ( ( ( invr ` R ) ` Z ) .x. Z ) = ( 1r ` R ) ) |
| 39 |
38
|
oveq1d |
|- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. X ) = ( ( 1r ` R ) .x. X ) ) |
| 40 |
31 35 1
|
ringinvcl |
|- ( ( R e. Ring /\ Z e. ( Unit ` R ) ) -> ( ( invr ` R ) ` Z ) e. B ) |
| 41 |
17 34 40
|
syl2anc |
|- ( ph -> ( ( invr ` R ) ` Z ) e. B ) |
| 42 |
1 2
|
ringass |
|- ( ( R e. Ring /\ ( ( ( invr ` R ) ` Z ) e. B /\ Z e. B /\ X e. B ) ) -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. X ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) ) |
| 43 |
17 41 7 5 42
|
syl13anc |
|- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. X ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) ) |
| 44 |
1 2 36
|
ringlidm |
|- ( ( R e. Ring /\ X e. B ) -> ( ( 1r ` R ) .x. X ) = X ) |
| 45 |
17 5 44
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) .x. X ) = X ) |
| 46 |
39 43 45
|
3eqtr3d |
|- ( ph -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) = X ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) = X ) |
| 48 |
38
|
oveq1d |
|- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. Y ) = ( ( 1r ` R ) .x. Y ) ) |
| 49 |
1 2
|
ringass |
|- ( ( R e. Ring /\ ( ( ( invr ` R ) ` Z ) e. B /\ Z e. B /\ Y e. B ) ) -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. Y ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) ) |
| 50 |
17 41 7 6 49
|
syl13anc |
|- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. Y ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) ) |
| 51 |
1 2 36
|
ringlidm |
|- ( ( R e. Ring /\ Y e. B ) -> ( ( 1r ` R ) .x. Y ) = Y ) |
| 52 |
17 6 51
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) .x. Y ) = Y ) |
| 53 |
48 50 52
|
3eqtr3d |
|- ( ph -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) = Y ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) = Y ) |
| 55 |
26 47 54
|
3eqtr3d |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> X = Y ) |
| 56 |
8
|
pltne |
|- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X =/= Y ) ) |
| 57 |
56
|
imp |
|- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X =/= Y ) |
| 58 |
4 5 6 10 57
|
syl31anc |
|- ( ph -> X =/= Y ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> X =/= Y ) |
| 60 |
59
|
neneqd |
|- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> -. X = Y ) |
| 61 |
55 60
|
pm2.65da |
|- ( ph -> -. ( Z .x. X ) = ( Z .x. Y ) ) |
| 62 |
61
|
neqned |
|- ( ph -> ( Z .x. X ) =/= ( Z .x. Y ) ) |
| 63 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ Z e. B /\ X e. B ) -> ( Z .x. X ) e. B ) |
| 64 |
17 7 5 63
|
syl3anc |
|- ( ph -> ( Z .x. X ) e. B ) |
| 65 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ Z e. B /\ Y e. B ) -> ( Z .x. Y ) e. B ) |
| 66 |
17 7 6 65
|
syl3anc |
|- ( ph -> ( Z .x. Y ) e. B ) |
| 67 |
12 8
|
pltval |
|- ( ( R e. oRing /\ ( Z .x. X ) e. B /\ ( Z .x. Y ) e. B ) -> ( ( Z .x. X ) .< ( Z .x. Y ) <-> ( ( Z .x. X ) ( le ` R ) ( Z .x. Y ) /\ ( Z .x. X ) =/= ( Z .x. Y ) ) ) ) |
| 68 |
4 64 66 67
|
syl3anc |
|- ( ph -> ( ( Z .x. X ) .< ( Z .x. Y ) <-> ( ( Z .x. X ) ( le ` R ) ( Z .x. Y ) /\ ( Z .x. X ) =/= ( Z .x. Y ) ) ) ) |
| 69 |
24 62 68
|
mpbir2and |
|- ( ph -> ( Z .x. X ) .< ( Z .x. Y ) ) |