Metamath Proof Explorer


Theorem ogrpsub

Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses ogrpsub.0 B=BaseG
ogrpsub.1 ˙=G
ogrpsub.2 -˙=-G
Assertion ogrpsub GoGrpXBYBZBX˙YX-˙Z˙Y-˙Z

Proof

Step Hyp Ref Expression
1 ogrpsub.0 B=BaseG
2 ogrpsub.1 ˙=G
3 ogrpsub.2 -˙=-G
4 isogrp GoGrpGGrpGoMnd
5 4 simprbi GoGrpGoMnd
6 5 3ad2ant1 GoGrpXBYBZBX˙YGoMnd
7 simp21 GoGrpXBYBZBX˙YXB
8 simp22 GoGrpXBYBZBX˙YYB
9 ogrpgrp GoGrpGGrp
10 9 3ad2ant1 GoGrpXBYBZBX˙YGGrp
11 simp23 GoGrpXBYBZBX˙YZB
12 eqid invgG=invgG
13 1 12 grpinvcl GGrpZBinvgGZB
14 10 11 13 syl2anc GoGrpXBYBZBX˙YinvgGZB
15 simp3 GoGrpXBYBZBX˙YX˙Y
16 eqid +G=+G
17 1 2 16 omndadd GoMndXBYBinvgGZBX˙YX+GinvgGZ˙Y+GinvgGZ
18 6 7 8 14 15 17 syl131anc GoGrpXBYBZBX˙YX+GinvgGZ˙Y+GinvgGZ
19 1 16 12 3 grpsubval XBZBX-˙Z=X+GinvgGZ
20 7 11 19 syl2anc GoGrpXBYBZBX˙YX-˙Z=X+GinvgGZ
21 1 16 12 3 grpsubval YBZBY-˙Z=Y+GinvgGZ
22 8 11 21 syl2anc GoGrpXBYBZBX˙YY-˙Z=Y+GinvgGZ
23 18 20 22 3brtr4d GoGrpXBYBZBX˙YX-˙Z˙Y-˙Z