Metamath Proof Explorer


Theorem ogrpsub

Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses ogrpsub.0 𝐵 = ( Base ‘ 𝐺 )
ogrpsub.1 = ( le ‘ 𝐺 )
ogrpsub.2 = ( -g𝐺 )
Assertion ogrpsub ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) )

Proof

Step Hyp Ref Expression
1 ogrpsub.0 𝐵 = ( Base ‘ 𝐺 )
2 ogrpsub.1 = ( le ‘ 𝐺 )
3 ogrpsub.2 = ( -g𝐺 )
4 isogrp ( 𝐺 ∈ oGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd ) )
5 4 simprbi ( 𝐺 ∈ oGrp → 𝐺 ∈ oMnd )
6 5 3ad2ant1 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → 𝐺 ∈ oMnd )
7 simp21 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → 𝑋𝐵 )
8 simp22 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → 𝑌𝐵 )
9 ogrpgrp ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp )
10 9 3ad2ant1 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → 𝐺 ∈ Grp )
11 simp23 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → 𝑍𝐵 )
12 eqid ( invg𝐺 ) = ( invg𝐺 )
13 1 12 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑍𝐵 ) → ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵 )
14 10 11 13 syl2anc ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵 )
15 simp3 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → 𝑋 𝑌 )
16 eqid ( +g𝐺 ) = ( +g𝐺 )
17 1 2 16 omndadd ( ( 𝐺 ∈ oMnd ∧ ( 𝑋𝐵𝑌𝐵 ∧ ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) ( 𝑌 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) )
18 6 7 8 14 15 17 syl131anc ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) ( 𝑌 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) )
19 1 16 12 3 grpsubval ( ( 𝑋𝐵𝑍𝐵 ) → ( 𝑋 𝑍 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) )
20 7 11 19 syl2anc ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋 𝑍 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) )
21 1 16 12 3 grpsubval ( ( 𝑌𝐵𝑍𝐵 ) → ( 𝑌 𝑍 ) = ( 𝑌 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) )
22 8 11 21 syl2anc ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑌 𝑍 ) = ( 𝑌 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑍 ) ) )
23 18 20 22 3brtr4d ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋 𝑍 ) ( 𝑌 𝑍 ) )