Step |
Hyp |
Ref |
Expression |
1 |
|
ogrpsub.0 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ogrpsub.1 |
⊢ ≤ = ( le ‘ 𝐺 ) |
3 |
|
ogrpsub.2 |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
isogrp |
⊢ ( 𝐺 ∈ oGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd ) ) |
5 |
4
|
simprbi |
⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ oMnd ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝐺 ∈ oMnd ) |
7 |
|
simp21 |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ 𝐵 ) |
8 |
|
simp22 |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ 𝐵 ) |
9 |
|
ogrpgrp |
⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝐺 ∈ Grp ) |
11 |
|
simp23 |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑍 ∈ 𝐵 ) |
12 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
13 |
1 12
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
14 |
10 11 13
|
syl2anc |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
15 |
|
simp3 |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ≤ 𝑌 ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
17 |
1 2 16
|
omndadd |
⊢ ( ( 𝐺 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ≤ ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
18 |
6 7 8 14 15 17
|
syl131anc |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ≤ ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
19 |
1 16 12 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
20 |
7 11 19
|
syl2anc |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 − 𝑍 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
21 |
1 16 12 3
|
grpsubval |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
22 |
8 11 21
|
syl2anc |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑌 − 𝑍 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
23 |
18 20 22
|
3brtr4d |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 − 𝑍 ) ≤ ( 𝑌 − 𝑍 ) ) |