Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> ( M |`s A ) e. Mnd ) |
2 |
|
omndtos |
|- ( M e. oMnd -> M e. Toset ) |
3 |
2
|
adantr |
|- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> M e. Toset ) |
4 |
|
reldmress |
|- Rel dom |`s |
5 |
4
|
ovprc2 |
|- ( -. A e. _V -> ( M |`s A ) = (/) ) |
6 |
5
|
fveq2d |
|- ( -. A e. _V -> ( Base ` ( M |`s A ) ) = ( Base ` (/) ) ) |
7 |
6
|
adantl |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ -. A e. _V ) -> ( Base ` ( M |`s A ) ) = ( Base ` (/) ) ) |
8 |
|
base0 |
|- (/) = ( Base ` (/) ) |
9 |
7 8
|
eqtr4di |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ -. A e. _V ) -> ( Base ` ( M |`s A ) ) = (/) ) |
10 |
|
eqid |
|- ( Base ` ( M |`s A ) ) = ( Base ` ( M |`s A ) ) |
11 |
|
eqid |
|- ( 0g ` ( M |`s A ) ) = ( 0g ` ( M |`s A ) ) |
12 |
10 11
|
mndidcl |
|- ( ( M |`s A ) e. Mnd -> ( 0g ` ( M |`s A ) ) e. ( Base ` ( M |`s A ) ) ) |
13 |
12
|
ne0d |
|- ( ( M |`s A ) e. Mnd -> ( Base ` ( M |`s A ) ) =/= (/) ) |
14 |
13
|
ad2antlr |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ -. A e. _V ) -> ( Base ` ( M |`s A ) ) =/= (/) ) |
15 |
14
|
neneqd |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ -. A e. _V ) -> -. ( Base ` ( M |`s A ) ) = (/) ) |
16 |
9 15
|
condan |
|- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> A e. _V ) |
17 |
|
resstos |
|- ( ( M e. Toset /\ A e. _V ) -> ( M |`s A ) e. Toset ) |
18 |
3 16 17
|
syl2anc |
|- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> ( M |`s A ) e. Toset ) |
19 |
|
simplll |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> M e. oMnd ) |
20 |
|
eqid |
|- ( M |`s A ) = ( M |`s A ) |
21 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
22 |
20 21
|
ressbas |
|- ( A e. _V -> ( A i^i ( Base ` M ) ) = ( Base ` ( M |`s A ) ) ) |
23 |
|
inss2 |
|- ( A i^i ( Base ` M ) ) C_ ( Base ` M ) |
24 |
22 23
|
eqsstrrdi |
|- ( A e. _V -> ( Base ` ( M |`s A ) ) C_ ( Base ` M ) ) |
25 |
16 24
|
syl |
|- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> ( Base ` ( M |`s A ) ) C_ ( Base ` M ) ) |
26 |
25
|
ad2antrr |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> ( Base ` ( M |`s A ) ) C_ ( Base ` M ) ) |
27 |
|
simplr1 |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> a e. ( Base ` ( M |`s A ) ) ) |
28 |
26 27
|
sseldd |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> a e. ( Base ` M ) ) |
29 |
|
simplr2 |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> b e. ( Base ` ( M |`s A ) ) ) |
30 |
26 29
|
sseldd |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> b e. ( Base ` M ) ) |
31 |
|
simplr3 |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> c e. ( Base ` ( M |`s A ) ) ) |
32 |
26 31
|
sseldd |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> c e. ( Base ` M ) ) |
33 |
|
eqid |
|- ( le ` M ) = ( le ` M ) |
34 |
20 33
|
ressle |
|- ( A e. _V -> ( le ` M ) = ( le ` ( M |`s A ) ) ) |
35 |
16 34
|
syl |
|- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> ( le ` M ) = ( le ` ( M |`s A ) ) ) |
36 |
35
|
adantr |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( le ` M ) = ( le ` ( M |`s A ) ) ) |
37 |
36
|
breqd |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( a ( le ` M ) b <-> a ( le ` ( M |`s A ) ) b ) ) |
38 |
37
|
biimpar |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> a ( le ` M ) b ) |
39 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
40 |
21 33 39
|
omndadd |
|- ( ( M e. oMnd /\ ( a e. ( Base ` M ) /\ b e. ( Base ` M ) /\ c e. ( Base ` M ) ) /\ a ( le ` M ) b ) -> ( a ( +g ` M ) c ) ( le ` M ) ( b ( +g ` M ) c ) ) |
41 |
19 28 30 32 38 40
|
syl131anc |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> ( a ( +g ` M ) c ) ( le ` M ) ( b ( +g ` M ) c ) ) |
42 |
16
|
adantr |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> A e. _V ) |
43 |
20 39
|
ressplusg |
|- ( A e. _V -> ( +g ` M ) = ( +g ` ( M |`s A ) ) ) |
44 |
42 43
|
syl |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( +g ` M ) = ( +g ` ( M |`s A ) ) ) |
45 |
44
|
oveqd |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( a ( +g ` M ) c ) = ( a ( +g ` ( M |`s A ) ) c ) ) |
46 |
42 34
|
syl |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( le ` M ) = ( le ` ( M |`s A ) ) ) |
47 |
44
|
oveqd |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( b ( +g ` M ) c ) = ( b ( +g ` ( M |`s A ) ) c ) ) |
48 |
45 46 47
|
breq123d |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( ( a ( +g ` M ) c ) ( le ` M ) ( b ( +g ` M ) c ) <-> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) ) |
49 |
48
|
adantr |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> ( ( a ( +g ` M ) c ) ( le ` M ) ( b ( +g ` M ) c ) <-> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) ) |
50 |
41 49
|
mpbid |
|- ( ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) /\ a ( le ` ( M |`s A ) ) b ) -> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) |
51 |
50
|
ex |
|- ( ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) /\ ( a e. ( Base ` ( M |`s A ) ) /\ b e. ( Base ` ( M |`s A ) ) /\ c e. ( Base ` ( M |`s A ) ) ) ) -> ( a ( le ` ( M |`s A ) ) b -> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) ) |
52 |
51
|
ralrimivvva |
|- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> A. a e. ( Base ` ( M |`s A ) ) A. b e. ( Base ` ( M |`s A ) ) A. c e. ( Base ` ( M |`s A ) ) ( a ( le ` ( M |`s A ) ) b -> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) ) |
53 |
|
eqid |
|- ( +g ` ( M |`s A ) ) = ( +g ` ( M |`s A ) ) |
54 |
|
eqid |
|- ( le ` ( M |`s A ) ) = ( le ` ( M |`s A ) ) |
55 |
10 53 54
|
isomnd |
|- ( ( M |`s A ) e. oMnd <-> ( ( M |`s A ) e. Mnd /\ ( M |`s A ) e. Toset /\ A. a e. ( Base ` ( M |`s A ) ) A. b e. ( Base ` ( M |`s A ) ) A. c e. ( Base ` ( M |`s A ) ) ( a ( le ` ( M |`s A ) ) b -> ( a ( +g ` ( M |`s A ) ) c ) ( le ` ( M |`s A ) ) ( b ( +g ` ( M |`s A ) ) c ) ) ) ) |
56 |
1 18 52 55
|
syl3anbrc |
|- ( ( M e. oMnd /\ ( M |`s A ) e. Mnd ) -> ( M |`s A ) e. oMnd ) |