| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
omndtos |
|
| 3 |
2
|
adantr |
|
| 4 |
|
reldmress |
|
| 5 |
4
|
ovprc2 |
|
| 6 |
5
|
fveq2d |
|
| 7 |
6
|
adantl |
|
| 8 |
|
base0 |
|
| 9 |
7 8
|
eqtr4di |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
10 11
|
mndidcl |
|
| 13 |
12
|
ne0d |
|
| 14 |
13
|
ad2antlr |
|
| 15 |
14
|
neneqd |
|
| 16 |
9 15
|
condan |
|
| 17 |
|
resstos |
|
| 18 |
3 16 17
|
syl2anc |
|
| 19 |
|
simplll |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
20 21
|
ressbas |
|
| 23 |
|
inss2 |
|
| 24 |
22 23
|
eqsstrrdi |
|
| 25 |
16 24
|
syl |
|
| 26 |
25
|
ad2antrr |
|
| 27 |
|
simplr1 |
|
| 28 |
26 27
|
sseldd |
|
| 29 |
|
simplr2 |
|
| 30 |
26 29
|
sseldd |
|
| 31 |
|
simplr3 |
|
| 32 |
26 31
|
sseldd |
|
| 33 |
|
eqid |
|
| 34 |
20 33
|
ressle |
|
| 35 |
16 34
|
syl |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
breqd |
|
| 38 |
37
|
biimpar |
|
| 39 |
|
eqid |
|
| 40 |
21 33 39
|
omndadd |
|
| 41 |
19 28 30 32 38 40
|
syl131anc |
|
| 42 |
16
|
adantr |
|
| 43 |
20 39
|
ressplusg |
|
| 44 |
42 43
|
syl |
|
| 45 |
44
|
oveqd |
|
| 46 |
42 34
|
syl |
|
| 47 |
44
|
oveqd |
|
| 48 |
45 46 47
|
breq123d |
|
| 49 |
48
|
adantr |
|
| 50 |
41 49
|
mpbid |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
ralrimivvva |
|
| 53 |
|
eqid |
|
| 54 |
|
eqid |
|
| 55 |
10 53 54
|
isomnd |
|
| 56 |
1 18 52 55
|
syl3anbrc |
|