Metamath Proof Explorer


Theorem submomnd

Description: A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Assertion submomnd ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) → ( 𝑀s 𝐴 ) ∈ oMnd )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) → ( 𝑀s 𝐴 ) ∈ Mnd )
2 omndtos ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset )
3 2 adantr ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) → 𝑀 ∈ Toset )
4 reldmress Rel dom ↾s
5 4 ovprc2 ( ¬ 𝐴 ∈ V → ( 𝑀s 𝐴 ) = ∅ )
6 5 fveq2d ( ¬ 𝐴 ∈ V → ( Base ‘ ( 𝑀s 𝐴 ) ) = ( Base ‘ ∅ ) )
7 6 adantl ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ( Base ‘ ( 𝑀s 𝐴 ) ) = ( Base ‘ ∅ ) )
8 base0 ∅ = ( Base ‘ ∅ )
9 7 8 eqtr4di ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ( Base ‘ ( 𝑀s 𝐴 ) ) = ∅ )
10 eqid ( Base ‘ ( 𝑀s 𝐴 ) ) = ( Base ‘ ( 𝑀s 𝐴 ) )
11 eqid ( 0g ‘ ( 𝑀s 𝐴 ) ) = ( 0g ‘ ( 𝑀s 𝐴 ) )
12 10 11 mndidcl ( ( 𝑀s 𝐴 ) ∈ Mnd → ( 0g ‘ ( 𝑀s 𝐴 ) ) ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) )
13 12 ne0d ( ( 𝑀s 𝐴 ) ∈ Mnd → ( Base ‘ ( 𝑀s 𝐴 ) ) ≠ ∅ )
14 13 ad2antlr ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ( Base ‘ ( 𝑀s 𝐴 ) ) ≠ ∅ )
15 14 neneqd ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ¬ ( Base ‘ ( 𝑀s 𝐴 ) ) = ∅ )
16 9 15 condan ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) → 𝐴 ∈ V )
17 resstos ( ( 𝑀 ∈ Toset ∧ 𝐴 ∈ V ) → ( 𝑀s 𝐴 ) ∈ Toset )
18 3 16 17 syl2anc ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) → ( 𝑀s 𝐴 ) ∈ Toset )
19 simplll ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → 𝑀 ∈ oMnd )
20 eqid ( 𝑀s 𝐴 ) = ( 𝑀s 𝐴 )
21 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
22 20 21 ressbas ( 𝐴 ∈ V → ( 𝐴 ∩ ( Base ‘ 𝑀 ) ) = ( Base ‘ ( 𝑀s 𝐴 ) ) )
23 inss2 ( 𝐴 ∩ ( Base ‘ 𝑀 ) ) ⊆ ( Base ‘ 𝑀 )
24 22 23 eqsstrrdi ( 𝐴 ∈ V → ( Base ‘ ( 𝑀s 𝐴 ) ) ⊆ ( Base ‘ 𝑀 ) )
25 16 24 syl ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) → ( Base ‘ ( 𝑀s 𝐴 ) ) ⊆ ( Base ‘ 𝑀 ) )
26 25 ad2antrr ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → ( Base ‘ ( 𝑀s 𝐴 ) ) ⊆ ( Base ‘ 𝑀 ) )
27 simplr1 ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) )
28 26 27 sseldd ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → 𝑎 ∈ ( Base ‘ 𝑀 ) )
29 simplr2 ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) )
30 26 29 sseldd ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → 𝑏 ∈ ( Base ‘ 𝑀 ) )
31 simplr3 ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) )
32 26 31 sseldd ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → 𝑐 ∈ ( Base ‘ 𝑀 ) )
33 eqid ( le ‘ 𝑀 ) = ( le ‘ 𝑀 )
34 20 33 ressle ( 𝐴 ∈ V → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀s 𝐴 ) ) )
35 16 34 syl ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀s 𝐴 ) ) )
36 35 adantr ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀s 𝐴 ) ) )
37 36 breqd ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) → ( 𝑎 ( le ‘ 𝑀 ) 𝑏𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) )
38 37 biimpar ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → 𝑎 ( le ‘ 𝑀 ) 𝑏 )
39 eqid ( +g𝑀 ) = ( +g𝑀 )
40 21 33 39 omndadd ( ( 𝑀 ∈ oMnd ∧ ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ∧ 𝑐 ∈ ( Base ‘ 𝑀 ) ) ∧ 𝑎 ( le ‘ 𝑀 ) 𝑏 ) → ( 𝑎 ( +g𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g𝑀 ) 𝑐 ) )
41 19 28 30 32 38 40 syl131anc ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → ( 𝑎 ( +g𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g𝑀 ) 𝑐 ) )
42 16 adantr ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) → 𝐴 ∈ V )
43 20 39 ressplusg ( 𝐴 ∈ V → ( +g𝑀 ) = ( +g ‘ ( 𝑀s 𝐴 ) ) )
44 42 43 syl ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) → ( +g𝑀 ) = ( +g ‘ ( 𝑀s 𝐴 ) ) )
45 44 oveqd ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) → ( 𝑎 ( +g𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) )
46 42 34 syl ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀s 𝐴 ) ) )
47 44 oveqd ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) → ( 𝑏 ( +g𝑀 ) 𝑐 ) = ( 𝑏 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) )
48 45 46 47 breq123d ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) → ( ( 𝑎 ( +g𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g𝑀 ) 𝑐 ) ↔ ( 𝑎 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) ) )
49 48 adantr ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → ( ( 𝑎 ( +g𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g𝑀 ) 𝑐 ) ↔ ( 𝑎 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) ) )
50 41 49 mpbid ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 ) → ( 𝑎 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) )
51 50 ex ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ) ) → ( 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 → ( 𝑎 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) ) )
52 51 ralrimivvva ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) → ∀ 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∀ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ( 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 → ( 𝑎 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) ) )
53 eqid ( +g ‘ ( 𝑀s 𝐴 ) ) = ( +g ‘ ( 𝑀s 𝐴 ) )
54 eqid ( le ‘ ( 𝑀s 𝐴 ) ) = ( le ‘ ( 𝑀s 𝐴 ) )
55 10 53 54 isomnd ( ( 𝑀s 𝐴 ) ∈ oMnd ↔ ( ( 𝑀s 𝐴 ) ∈ Mnd ∧ ( 𝑀s 𝐴 ) ∈ Toset ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ∀ 𝑐 ∈ ( Base ‘ ( 𝑀s 𝐴 ) ) ( 𝑎 ( le ‘ ( 𝑀s 𝐴 ) ) 𝑏 → ( 𝑎 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀s 𝐴 ) ) 𝑐 ) ) ) )
56 1 18 52 55 syl3anbrc ( ( 𝑀 ∈ oMnd ∧ ( 𝑀s 𝐴 ) ∈ Mnd ) → ( 𝑀s 𝐴 ) ∈ oMnd )