Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) |
2 |
|
omndtos |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) |
3 |
2
|
adantr |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → 𝑀 ∈ Toset ) |
4 |
|
reldmress |
⊢ Rel dom ↾s |
5 |
4
|
ovprc2 |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑀 ↾s 𝐴 ) = ∅ ) |
6 |
5
|
fveq2d |
⊢ ( ¬ 𝐴 ∈ V → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) = ( Base ‘ ∅ ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) = ( Base ‘ ∅ ) ) |
8 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
9 |
7 8
|
eqtr4di |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) = ∅ ) |
10 |
|
eqid |
⊢ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) |
11 |
|
eqid |
⊢ ( 0g ‘ ( 𝑀 ↾s 𝐴 ) ) = ( 0g ‘ ( 𝑀 ↾s 𝐴 ) ) |
12 |
10 11
|
mndidcl |
⊢ ( ( 𝑀 ↾s 𝐴 ) ∈ Mnd → ( 0g ‘ ( 𝑀 ↾s 𝐴 ) ) ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
13 |
12
|
ne0d |
⊢ ( ( 𝑀 ↾s 𝐴 ) ∈ Mnd → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ≠ ∅ ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ≠ ∅ ) |
15 |
14
|
neneqd |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ¬ 𝐴 ∈ V ) → ¬ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) = ∅ ) |
16 |
9 15
|
condan |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → 𝐴 ∈ V ) |
17 |
|
resstos |
⊢ ( ( 𝑀 ∈ Toset ∧ 𝐴 ∈ V ) → ( 𝑀 ↾s 𝐴 ) ∈ Toset ) |
18 |
3 16 17
|
syl2anc |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ( 𝑀 ↾s 𝐴 ) ∈ Toset ) |
19 |
|
simplll |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑀 ∈ oMnd ) |
20 |
|
eqid |
⊢ ( 𝑀 ↾s 𝐴 ) = ( 𝑀 ↾s 𝐴 ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
22 |
20 21
|
ressbas |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ ( Base ‘ 𝑀 ) ) = ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
23 |
|
inss2 |
⊢ ( 𝐴 ∩ ( Base ‘ 𝑀 ) ) ⊆ ( Base ‘ 𝑀 ) |
24 |
22 23
|
eqsstrrdi |
⊢ ( 𝐴 ∈ V → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑀 ) ) |
25 |
16 24
|
syl |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑀 ) ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ⊆ ( Base ‘ 𝑀 ) ) |
27 |
|
simplr1 |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
28 |
26 27
|
sseldd |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑎 ∈ ( Base ‘ 𝑀 ) ) |
29 |
|
simplr2 |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
30 |
26 29
|
sseldd |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
31 |
|
simplr3 |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
32 |
26 31
|
sseldd |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑐 ∈ ( Base ‘ 𝑀 ) ) |
33 |
|
eqid |
⊢ ( le ‘ 𝑀 ) = ( le ‘ 𝑀 ) |
34 |
20 33
|
ressle |
⊢ ( 𝐴 ∈ V → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
35 |
16 34
|
syl |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
37 |
36
|
breqd |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( 𝑎 ( le ‘ 𝑀 ) 𝑏 ↔ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) ) |
38 |
37
|
biimpar |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → 𝑎 ( le ‘ 𝑀 ) 𝑏 ) |
39 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
40 |
21 33 39
|
omndadd |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ∧ 𝑐 ∈ ( Base ‘ 𝑀 ) ) ∧ 𝑎 ( le ‘ 𝑀 ) 𝑏 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) |
41 |
19 28 30 32 38 40
|
syl131anc |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) |
42 |
16
|
adantr |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → 𝐴 ∈ V ) |
43 |
20 39
|
ressplusg |
⊢ ( 𝐴 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
44 |
42 43
|
syl |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( +g ‘ 𝑀 ) = ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
45 |
44
|
oveqd |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) |
46 |
42 34
|
syl |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( le ‘ 𝑀 ) = ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ) |
47 |
44
|
oveqd |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) |
48 |
45 46 47
|
breq123d |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ↔ ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) ) |
49 |
48
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ↔ ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) ) |
50 |
41 49
|
mpbid |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) ∧ 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 ) → ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) |
51 |
50
|
ex |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) ∧ ( 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∧ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ) ) → ( 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 → ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) ) |
52 |
51
|
ralrimivvva |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ∀ 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∀ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 → ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) ) |
53 |
|
eqid |
⊢ ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) = ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) |
54 |
|
eqid |
⊢ ( le ‘ ( 𝑀 ↾s 𝐴 ) ) = ( le ‘ ( 𝑀 ↾s 𝐴 ) ) |
55 |
10 53 54
|
isomnd |
⊢ ( ( 𝑀 ↾s 𝐴 ) ∈ oMnd ↔ ( ( 𝑀 ↾s 𝐴 ) ∈ Mnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Toset ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ∀ 𝑐 ∈ ( Base ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑎 ( le ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑏 → ( 𝑎 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ( le ‘ ( 𝑀 ↾s 𝐴 ) ) ( 𝑏 ( +g ‘ ( 𝑀 ↾s 𝐴 ) ) 𝑐 ) ) ) ) |
56 |
1 18 52 55
|
syl3anbrc |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑀 ↾s 𝐴 ) ∈ Mnd ) → ( 𝑀 ↾s 𝐴 ) ∈ oMnd ) |