| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 2 |
|
cmnmnd |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
| 4 |
|
ovex |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ V |
| 5 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 6 |
|
xrge0le |
⊢ ≤ = ( le ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 7 |
|
eliccxr |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ℝ* ) |
| 8 |
7
|
xrleidd |
⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ≤ 𝑥 ) |
| 9 |
|
eliccxr |
⊢ ( 𝑦 ∈ ( 0 [,] +∞ ) → 𝑦 ∈ ℝ* ) |
| 10 |
|
xrletri3 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ) ) |
| 11 |
10
|
biimprd |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 12 |
7 9 11
|
syl2an |
⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 13 |
|
eliccxr |
⊢ ( 𝑧 ∈ ( 0 [,] +∞ ) → 𝑧 ∈ ℝ* ) |
| 14 |
|
xrletr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
| 15 |
7 9 13 14
|
syl3an |
⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
| 16 |
4 5 6 8 12 15
|
isposi |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Poset |
| 17 |
|
xrletri |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
| 18 |
7 9 17
|
syl2an |
⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
| 19 |
18
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) |
| 20 |
5 6
|
istos |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Toset ↔ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Poset ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| 21 |
16 19 20
|
mpbir2an |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Toset |
| 22 |
|
xleadd1a |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 +𝑒 𝑧 ) ≤ ( 𝑦 +𝑒 𝑧 ) ) |
| 23 |
22
|
ex |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 → ( 𝑥 +𝑒 𝑧 ) ≤ ( 𝑦 +𝑒 𝑧 ) ) ) |
| 24 |
7 9 13 23
|
syl3an |
⊢ ( ( 𝑥 ∈ ( 0 [,] +∞ ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ≤ 𝑦 → ( 𝑥 +𝑒 𝑧 ) ≤ ( 𝑦 +𝑒 𝑧 ) ) ) |
| 25 |
24
|
rgen3 |
⊢ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ∀ 𝑧 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 → ( 𝑥 +𝑒 𝑧 ) ≤ ( 𝑦 +𝑒 𝑧 ) ) |
| 26 |
|
xrge0plusg |
⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 27 |
5 26 6
|
isomnd |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ oMnd ↔ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ∧ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Toset ∧ ∀ 𝑥 ∈ ( 0 [,] +∞ ) ∀ 𝑦 ∈ ( 0 [,] +∞ ) ∀ 𝑧 ∈ ( 0 [,] +∞ ) ( 𝑥 ≤ 𝑦 → ( 𝑥 +𝑒 𝑧 ) ≤ ( 𝑦 +𝑒 𝑧 ) ) ) ) |
| 28 |
3 21 25 27
|
mpbir3an |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ oMnd |