Description: The "less than or equal to" relation in the extended real numbers. (Contributed by Thierry Arnoux, 14-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0le | ⊢ ≤ = ( le ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( 0 [,] +∞ ) ∈ V | |
| 2 | eqid | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) | |
| 3 | xrsle | ⊢ ≤ = ( le ‘ ℝ*𝑠 ) | |
| 4 | 2 3 | ressle | ⊢ ( ( 0 [,] +∞ ) ∈ V → ≤ = ( le ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
| 5 | 1 4 | ax-mp | ⊢ ≤ = ( le ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |