| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omndmul.0 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
omndmul.1 |
⊢ ≤ = ( le ‘ 𝑀 ) |
| 3 |
|
omndmul2.2 |
⊢ · = ( .g ‘ 𝑀 ) |
| 4 |
|
omndmul2.3 |
⊢ 0 = ( 0g ‘ 𝑀 ) |
| 5 |
|
df-3an |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ↔ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ) ∧ 0 ≤ 𝑋 ) ) |
| 6 |
|
anass |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ↔ ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ) ) |
| 7 |
6
|
anbi1i |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ↔ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ) ∧ 0 ≤ 𝑋 ) ) |
| 8 |
5 7
|
bitr4i |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ↔ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ) |
| 9 |
|
simplr |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 𝑁 ∈ ℕ0 ) |
| 10 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 11 |
10
|
breq2d |
⊢ ( 𝑚 = 0 → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( 0 · 𝑋 ) ) ) |
| 12 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 · 𝑋 ) = ( 𝑛 · 𝑋 ) ) |
| 13 |
12
|
breq2d |
⊢ ( 𝑚 = 𝑛 → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( 𝑛 · 𝑋 ) ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 · 𝑋 ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 15 |
14
|
breq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
| 16 |
|
oveq1 |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
| 17 |
16
|
breq2d |
⊢ ( 𝑚 = 𝑁 → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( 𝑁 · 𝑋 ) ) ) |
| 18 |
|
omndtos |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) |
| 19 |
|
tospos |
⊢ ( 𝑀 ∈ Toset → 𝑀 ∈ Poset ) |
| 20 |
18 19
|
syl |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Poset ) |
| 21 |
|
omndmnd |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) |
| 22 |
1 4
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
| 23 |
21 22
|
syl |
⊢ ( 𝑀 ∈ oMnd → 0 ∈ 𝐵 ) |
| 24 |
1 2
|
posref |
⊢ ( ( 𝑀 ∈ Poset ∧ 0 ∈ 𝐵 ) → 0 ≤ 0 ) |
| 25 |
20 23 24
|
syl2anc |
⊢ ( 𝑀 ∈ oMnd → 0 ≤ 0 ) |
| 26 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ 0 ) |
| 27 |
1 4 3
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = 0 ) |
| 28 |
27
|
ad3antlr |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → ( 0 · 𝑋 ) = 0 ) |
| 29 |
26 28
|
breqtrrd |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 0 · 𝑋 ) ) |
| 30 |
20
|
ad5antr |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑀 ∈ Poset ) |
| 31 |
21
|
ad5antr |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑀 ∈ Mnd ) |
| 32 |
31 22
|
syl |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 0 ∈ 𝐵 ) |
| 33 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑛 ∈ ℕ0 ) |
| 34 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
| 35 |
1 3 31 33 34
|
mulgnn0cld |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
| 36 |
|
simpr32 |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) ) → 𝑛 ∈ ℕ0 ) |
| 37 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 38 |
37
|
a1i |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) ) → 1 ∈ ℕ0 ) |
| 39 |
36 38
|
nn0addcld |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 40 |
39
|
3anassrs |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 41 |
40
|
3anassrs |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 42 |
1 3 31 41 34
|
mulgnn0cld |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) |
| 43 |
32 35 42
|
3jca |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 0 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) ) |
| 44 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 0 ≤ ( 𝑛 · 𝑋 ) ) |
| 45 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ oMnd ) |
| 46 |
21
|
ad4antr |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ Mnd ) |
| 47 |
46 22
|
syl |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 0 ∈ 𝐵 ) |
| 48 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 49 |
|
simpr |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 50 |
1 3 46 49 48
|
mulgnn0cld |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
| 51 |
|
simplr |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ 𝑋 ) |
| 52 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 53 |
1 2 52
|
omndadd |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
| 54 |
45 47 48 50 51 53
|
syl131anc |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
| 55 |
1 52 4
|
mndlid |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( 𝑛 · 𝑋 ) ) |
| 56 |
46 50 55
|
syl2anc |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( 𝑛 · 𝑋 ) ) |
| 57 |
37
|
a1i |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 1 ∈ ℕ0 ) |
| 58 |
1 3 52
|
mulgnn0dir |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 1 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 1 + 𝑛 ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
| 59 |
46 57 49 48 58
|
syl13anc |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 + 𝑛 ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
| 60 |
|
1cnd |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → 1 ∈ ℂ ) |
| 61 |
|
simpr3 |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → 𝑛 ∈ ℕ0 ) |
| 62 |
61
|
nn0cnd |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → 𝑛 ∈ ℂ ) |
| 63 |
60 62
|
addcomd |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → ( 1 + 𝑛 ) = ( 𝑛 + 1 ) ) |
| 64 |
63
|
3anassrs |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 1 + 𝑛 ) = ( 𝑛 + 1 ) ) |
| 65 |
64
|
oveq1d |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 + 𝑛 ) · 𝑋 ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 66 |
1 3
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
| 67 |
48 66
|
syl |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 68 |
67
|
oveq1d |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
| 69 |
59 65 68
|
3eqtr3rd |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 70 |
54 56 69
|
3brtr3d |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 72 |
1 2
|
postr |
⊢ ( ( 𝑀 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) ) → ( ( 0 ≤ ( 𝑛 · 𝑋 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) → 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
| 73 |
72
|
imp |
⊢ ( ( ( 𝑀 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) ) ∧ ( 0 ≤ ( 𝑛 · 𝑋 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) → 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 74 |
30 43 44 71 73
|
syl22anc |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 75 |
11 13 15 17 29 74
|
nn0indd |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝑁 · 𝑋 ) ) |
| 76 |
9 75
|
mpdan |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 𝑁 · 𝑋 ) ) |
| 77 |
8 76
|
sylbi |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 𝑁 · 𝑋 ) ) |