Step |
Hyp |
Ref |
Expression |
1 |
|
omndmul.0 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
omndmul.1 |
⊢ ≤ = ( le ‘ 𝑀 ) |
3 |
|
omndmul2.2 |
⊢ · = ( .g ‘ 𝑀 ) |
4 |
|
omndmul2.3 |
⊢ 0 = ( 0g ‘ 𝑀 ) |
5 |
|
df-3an |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ↔ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ) ∧ 0 ≤ 𝑋 ) ) |
6 |
|
anass |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ↔ ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ) ) |
7 |
6
|
anbi1i |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ↔ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ) ∧ 0 ≤ 𝑋 ) ) |
8 |
5 7
|
bitr4i |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ↔ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ) |
9 |
|
simplr |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 𝑁 ∈ ℕ0 ) |
10 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 · 𝑋 ) = ( 0 · 𝑋 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑚 = 0 → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( 0 · 𝑋 ) ) ) |
12 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 · 𝑋 ) = ( 𝑛 · 𝑋 ) ) |
13 |
12
|
breq2d |
⊢ ( 𝑚 = 𝑛 → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( 𝑛 · 𝑋 ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 · 𝑋 ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
17 |
16
|
breq2d |
⊢ ( 𝑚 = 𝑁 → ( 0 ≤ ( 𝑚 · 𝑋 ) ↔ 0 ≤ ( 𝑁 · 𝑋 ) ) ) |
18 |
|
omndtos |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) |
19 |
|
tospos |
⊢ ( 𝑀 ∈ Toset → 𝑀 ∈ Poset ) |
20 |
18 19
|
syl |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Poset ) |
21 |
|
omndmnd |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) |
22 |
1 4
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
23 |
21 22
|
syl |
⊢ ( 𝑀 ∈ oMnd → 0 ∈ 𝐵 ) |
24 |
1 2
|
posref |
⊢ ( ( 𝑀 ∈ Poset ∧ 0 ∈ 𝐵 ) → 0 ≤ 0 ) |
25 |
20 23 24
|
syl2anc |
⊢ ( 𝑀 ∈ oMnd → 0 ≤ 0 ) |
26 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ 0 ) |
27 |
1 4 3
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = 0 ) |
28 |
27
|
ad3antlr |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → ( 0 · 𝑋 ) = 0 ) |
29 |
26 28
|
breqtrrd |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 0 · 𝑋 ) ) |
30 |
20
|
ad5antr |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑀 ∈ Poset ) |
31 |
21
|
ad5antr |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑀 ∈ Mnd ) |
32 |
31 22
|
syl |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 0 ∈ 𝐵 ) |
33 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑛 ∈ ℕ0 ) |
34 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
35 |
1 3
|
mulgnn0cl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
36 |
31 33 34 35
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
37 |
|
simpr32 |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) ) → 𝑛 ∈ ℕ0 ) |
38 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
39 |
38
|
a1i |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) ) → 1 ∈ ℕ0 ) |
40 |
37 39
|
nn0addcld |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
41 |
40
|
3anassrs |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
42 |
41
|
3anassrs |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
43 |
1 3
|
mulgnn0cl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑛 + 1 ) ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) |
44 |
31 42 34 43
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) |
45 |
32 36 44
|
3jca |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 0 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) ) |
46 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 0 ≤ ( 𝑛 · 𝑋 ) ) |
47 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ oMnd ) |
48 |
21
|
ad4antr |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ Mnd ) |
49 |
48 22
|
syl |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 0 ∈ 𝐵 ) |
50 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
51 |
|
simpr |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
52 |
48 51 50 35
|
syl3anc |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
53 |
|
simplr |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ 𝑋 ) |
54 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
55 |
1 2 54
|
omndadd |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
56 |
47 49 50 52 53 55
|
syl131anc |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
57 |
1 54 4
|
mndlid |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( 𝑛 · 𝑋 ) ) |
58 |
48 52 57
|
syl2anc |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( 𝑛 · 𝑋 ) ) |
59 |
38
|
a1i |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 1 ∈ ℕ0 ) |
60 |
1 3 54
|
mulgnn0dir |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 1 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 1 + 𝑛 ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
61 |
48 59 51 50 60
|
syl13anc |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 + 𝑛 ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
62 |
|
1cnd |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → 1 ∈ ℂ ) |
63 |
|
simpr3 |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → 𝑛 ∈ ℕ0 ) |
64 |
63
|
nn0cnd |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → 𝑛 ∈ ℂ ) |
65 |
62 64
|
addcomd |
⊢ ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑋 ∧ 𝑛 ∈ ℕ0 ) ) → ( 1 + 𝑛 ) = ( 𝑛 + 1 ) ) |
66 |
65
|
3anassrs |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 1 + 𝑛 ) = ( 𝑛 + 1 ) ) |
67 |
66
|
oveq1d |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 + 𝑛 ) · 𝑋 ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) |
68 |
1 3
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 · 𝑋 ) = 𝑋 ) |
69 |
50 68
|
syl |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 1 · 𝑋 ) = 𝑋 ) |
70 |
69
|
oveq1d |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 1 · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) ) |
71 |
61 67 70
|
3eqtr3rd |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ( +g ‘ 𝑀 ) ( 𝑛 · 𝑋 ) ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) |
72 |
56 58 71
|
3brtr3d |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
73 |
72
|
adantr |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
74 |
1 2
|
postr |
⊢ ( ( 𝑀 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) ) → ( ( 0 ≤ ( 𝑛 · 𝑋 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) → 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) |
75 |
74
|
imp |
⊢ ( ( ( 𝑀 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ ( 𝑛 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑛 + 1 ) · 𝑋 ) ∈ 𝐵 ) ) ∧ ( 0 ≤ ( 𝑛 · 𝑋 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) ) → 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
76 |
30 45 46 73 75
|
syl22anc |
⊢ ( ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 0 ≤ ( 𝑛 · 𝑋 ) ) → 0 ≤ ( ( 𝑛 + 1 ) · 𝑋 ) ) |
77 |
11 13 15 17 29 76
|
nn0indd |
⊢ ( ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝑁 · 𝑋 ) ) |
78 |
9 77
|
mpdan |
⊢ ( ( ( ( 𝑀 ∈ oMnd ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 𝑁 · 𝑋 ) ) |
79 |
8 78
|
sylbi |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 𝑁 · 𝑋 ) ) |