| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omndmul.0 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
omndmul.1 |
⊢ ≤ = ( le ‘ 𝑀 ) |
| 3 |
|
omndmul3.m |
⊢ · = ( .g ‘ 𝑀 ) |
| 4 |
|
omndmul3.0 |
⊢ 0 = ( 0g ‘ 𝑀 ) |
| 5 |
|
omndmul3.o |
⊢ ( 𝜑 → 𝑀 ∈ oMnd ) |
| 6 |
|
omndmul3.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 7 |
|
omndmul3.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 8 |
|
omndmul3.3 |
⊢ ( 𝜑 → 𝑁 ≤ 𝑃 ) |
| 9 |
|
omndmul3.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 10 |
|
omndmul3.5 |
⊢ ( 𝜑 → 0 ≤ 𝑋 ) |
| 11 |
|
omndmnd |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) |
| 12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 13 |
1 4
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 15 |
|
nn0sub |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑃 ↔ ( 𝑃 − 𝑁 ) ∈ ℕ0 ) ) |
| 16 |
15
|
biimpa |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑃 ) → ( 𝑃 − 𝑁 ) ∈ ℕ0 ) |
| 17 |
6 7 8 16
|
syl21anc |
⊢ ( 𝜑 → ( 𝑃 − 𝑁 ) ∈ ℕ0 ) |
| 18 |
1 3 12 17 9
|
mulgnn0cld |
⊢ ( 𝜑 → ( ( 𝑃 − 𝑁 ) · 𝑋 ) ∈ 𝐵 ) |
| 19 |
1 3 12 6 9
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 20 |
1 2 3 4
|
omndmul2 |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 − 𝑁 ) ∈ ℕ0 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( ( 𝑃 − 𝑁 ) · 𝑋 ) ) |
| 21 |
5 9 17 10 20
|
syl121anc |
⊢ ( 𝜑 → 0 ≤ ( ( 𝑃 − 𝑁 ) · 𝑋 ) ) |
| 22 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 23 |
1 2 22
|
omndadd |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ ( ( 𝑃 − 𝑁 ) · 𝑋 ) ∈ 𝐵 ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) ∧ 0 ≤ ( ( 𝑃 − 𝑁 ) · 𝑋 ) ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ≤ ( ( ( 𝑃 − 𝑁 ) · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ) |
| 24 |
5 14 18 19 21 23
|
syl131anc |
⊢ ( 𝜑 → ( 0 ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ≤ ( ( ( 𝑃 − 𝑁 ) · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ) |
| 25 |
1 22 4
|
mndlid |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |
| 26 |
12 19 25
|
syl2anc |
⊢ ( 𝜑 → ( 0 ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |
| 27 |
1 3 22
|
mulgnn0dir |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( ( 𝑃 − 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑃 − 𝑁 ) + 𝑁 ) · 𝑋 ) = ( ( ( 𝑃 − 𝑁 ) · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ) |
| 28 |
12 17 6 9 27
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝑃 − 𝑁 ) + 𝑁 ) · 𝑋 ) = ( ( ( 𝑃 − 𝑁 ) · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) ) |
| 29 |
7
|
nn0cnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 30 |
6
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 31 |
29 30
|
npcand |
⊢ ( 𝜑 → ( ( 𝑃 − 𝑁 ) + 𝑁 ) = 𝑃 ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑃 − 𝑁 ) + 𝑁 ) · 𝑋 ) = ( 𝑃 · 𝑋 ) ) |
| 33 |
28 32
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝑃 − 𝑁 ) · 𝑋 ) ( +g ‘ 𝑀 ) ( 𝑁 · 𝑋 ) ) = ( 𝑃 · 𝑋 ) ) |
| 34 |
24 26 33
|
3brtr3d |
⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ≤ ( 𝑃 · 𝑋 ) ) |