| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omndmul.0 |
|- B = ( Base ` M ) |
| 2 |
|
omndmul.1 |
|- .<_ = ( le ` M ) |
| 3 |
|
omndmul3.m |
|- .x. = ( .g ` M ) |
| 4 |
|
omndmul3.0 |
|- .0. = ( 0g ` M ) |
| 5 |
|
omndmul3.o |
|- ( ph -> M e. oMnd ) |
| 6 |
|
omndmul3.1 |
|- ( ph -> N e. NN0 ) |
| 7 |
|
omndmul3.2 |
|- ( ph -> P e. NN0 ) |
| 8 |
|
omndmul3.3 |
|- ( ph -> N <_ P ) |
| 9 |
|
omndmul3.4 |
|- ( ph -> X e. B ) |
| 10 |
|
omndmul3.5 |
|- ( ph -> .0. .<_ X ) |
| 11 |
|
omndmnd |
|- ( M e. oMnd -> M e. Mnd ) |
| 12 |
5 11
|
syl |
|- ( ph -> M e. Mnd ) |
| 13 |
1 4
|
mndidcl |
|- ( M e. Mnd -> .0. e. B ) |
| 14 |
12 13
|
syl |
|- ( ph -> .0. e. B ) |
| 15 |
|
nn0sub |
|- ( ( N e. NN0 /\ P e. NN0 ) -> ( N <_ P <-> ( P - N ) e. NN0 ) ) |
| 16 |
15
|
biimpa |
|- ( ( ( N e. NN0 /\ P e. NN0 ) /\ N <_ P ) -> ( P - N ) e. NN0 ) |
| 17 |
6 7 8 16
|
syl21anc |
|- ( ph -> ( P - N ) e. NN0 ) |
| 18 |
1 3 12 17 9
|
mulgnn0cld |
|- ( ph -> ( ( P - N ) .x. X ) e. B ) |
| 19 |
1 3 12 6 9
|
mulgnn0cld |
|- ( ph -> ( N .x. X ) e. B ) |
| 20 |
1 2 3 4
|
omndmul2 |
|- ( ( M e. oMnd /\ ( X e. B /\ ( P - N ) e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( ( P - N ) .x. X ) ) |
| 21 |
5 9 17 10 20
|
syl121anc |
|- ( ph -> .0. .<_ ( ( P - N ) .x. X ) ) |
| 22 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 23 |
1 2 22
|
omndadd |
|- ( ( M e. oMnd /\ ( .0. e. B /\ ( ( P - N ) .x. X ) e. B /\ ( N .x. X ) e. B ) /\ .0. .<_ ( ( P - N ) .x. X ) ) -> ( .0. ( +g ` M ) ( N .x. X ) ) .<_ ( ( ( P - N ) .x. X ) ( +g ` M ) ( N .x. X ) ) ) |
| 24 |
5 14 18 19 21 23
|
syl131anc |
|- ( ph -> ( .0. ( +g ` M ) ( N .x. X ) ) .<_ ( ( ( P - N ) .x. X ) ( +g ` M ) ( N .x. X ) ) ) |
| 25 |
1 22 4
|
mndlid |
|- ( ( M e. Mnd /\ ( N .x. X ) e. B ) -> ( .0. ( +g ` M ) ( N .x. X ) ) = ( N .x. X ) ) |
| 26 |
12 19 25
|
syl2anc |
|- ( ph -> ( .0. ( +g ` M ) ( N .x. X ) ) = ( N .x. X ) ) |
| 27 |
1 3 22
|
mulgnn0dir |
|- ( ( M e. Mnd /\ ( ( P - N ) e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( ( P - N ) + N ) .x. X ) = ( ( ( P - N ) .x. X ) ( +g ` M ) ( N .x. X ) ) ) |
| 28 |
12 17 6 9 27
|
syl13anc |
|- ( ph -> ( ( ( P - N ) + N ) .x. X ) = ( ( ( P - N ) .x. X ) ( +g ` M ) ( N .x. X ) ) ) |
| 29 |
7
|
nn0cnd |
|- ( ph -> P e. CC ) |
| 30 |
6
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 31 |
29 30
|
npcand |
|- ( ph -> ( ( P - N ) + N ) = P ) |
| 32 |
31
|
oveq1d |
|- ( ph -> ( ( ( P - N ) + N ) .x. X ) = ( P .x. X ) ) |
| 33 |
28 32
|
eqtr3d |
|- ( ph -> ( ( ( P - N ) .x. X ) ( +g ` M ) ( N .x. X ) ) = ( P .x. X ) ) |
| 34 |
24 26 33
|
3brtr3d |
|- ( ph -> ( N .x. X ) .<_ ( P .x. X ) ) |