| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omndmul.0 |
|- B = ( Base ` M ) |
| 2 |
|
omndmul.1 |
|- .<_ = ( le ` M ) |
| 3 |
|
omndmul.2 |
|- .x. = ( .g ` M ) |
| 4 |
|
omndmul.o |
|- ( ph -> M e. oMnd ) |
| 5 |
|
omndmul.c |
|- ( ph -> M e. CMnd ) |
| 6 |
|
omndmul.x |
|- ( ph -> X e. B ) |
| 7 |
|
omndmul.y |
|- ( ph -> Y e. B ) |
| 8 |
|
omndmul.n |
|- ( ph -> N e. NN0 ) |
| 9 |
|
omndmul.l |
|- ( ph -> X .<_ Y ) |
| 10 |
|
oveq1 |
|- ( m = 0 -> ( m .x. X ) = ( 0 .x. X ) ) |
| 11 |
|
oveq1 |
|- ( m = 0 -> ( m .x. Y ) = ( 0 .x. Y ) ) |
| 12 |
10 11
|
breq12d |
|- ( m = 0 -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( 0 .x. X ) .<_ ( 0 .x. Y ) ) ) |
| 13 |
|
oveq1 |
|- ( m = n -> ( m .x. X ) = ( n .x. X ) ) |
| 14 |
|
oveq1 |
|- ( m = n -> ( m .x. Y ) = ( n .x. Y ) ) |
| 15 |
13 14
|
breq12d |
|- ( m = n -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( n .x. X ) .<_ ( n .x. Y ) ) ) |
| 16 |
|
oveq1 |
|- ( m = ( n + 1 ) -> ( m .x. X ) = ( ( n + 1 ) .x. X ) ) |
| 17 |
|
oveq1 |
|- ( m = ( n + 1 ) -> ( m .x. Y ) = ( ( n + 1 ) .x. Y ) ) |
| 18 |
16 17
|
breq12d |
|- ( m = ( n + 1 ) -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( ( n + 1 ) .x. X ) .<_ ( ( n + 1 ) .x. Y ) ) ) |
| 19 |
|
oveq1 |
|- ( m = N -> ( m .x. X ) = ( N .x. X ) ) |
| 20 |
|
oveq1 |
|- ( m = N -> ( m .x. Y ) = ( N .x. Y ) ) |
| 21 |
19 20
|
breq12d |
|- ( m = N -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( N .x. X ) .<_ ( N .x. Y ) ) ) |
| 22 |
|
omndtos |
|- ( M e. oMnd -> M e. Toset ) |
| 23 |
|
tospos |
|- ( M e. Toset -> M e. Poset ) |
| 24 |
4 22 23
|
3syl |
|- ( ph -> M e. Poset ) |
| 25 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 26 |
1 25 3
|
mulg0 |
|- ( Y e. B -> ( 0 .x. Y ) = ( 0g ` M ) ) |
| 27 |
7 26
|
syl |
|- ( ph -> ( 0 .x. Y ) = ( 0g ` M ) ) |
| 28 |
|
omndmnd |
|- ( M e. oMnd -> M e. Mnd ) |
| 29 |
1 25
|
mndidcl |
|- ( M e. Mnd -> ( 0g ` M ) e. B ) |
| 30 |
4 28 29
|
3syl |
|- ( ph -> ( 0g ` M ) e. B ) |
| 31 |
27 30
|
eqeltrd |
|- ( ph -> ( 0 .x. Y ) e. B ) |
| 32 |
1 2
|
posref |
|- ( ( M e. Poset /\ ( 0 .x. Y ) e. B ) -> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) |
| 33 |
24 31 32
|
syl2anc |
|- ( ph -> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) |
| 34 |
1 25 3
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = ( 0g ` M ) ) |
| 35 |
34
|
adantr |
|- ( ( X e. B /\ Y e. B ) -> ( 0 .x. X ) = ( 0g ` M ) ) |
| 36 |
26
|
adantl |
|- ( ( X e. B /\ Y e. B ) -> ( 0 .x. Y ) = ( 0g ` M ) ) |
| 37 |
35 36
|
eqtr4d |
|- ( ( X e. B /\ Y e. B ) -> ( 0 .x. X ) = ( 0 .x. Y ) ) |
| 38 |
37
|
breq1d |
|- ( ( X e. B /\ Y e. B ) -> ( ( 0 .x. X ) .<_ ( 0 .x. Y ) <-> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) ) |
| 39 |
6 7 38
|
syl2anc |
|- ( ph -> ( ( 0 .x. X ) .<_ ( 0 .x. Y ) <-> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) ) |
| 40 |
33 39
|
mpbird |
|- ( ph -> ( 0 .x. X ) .<_ ( 0 .x. Y ) ) |
| 41 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 42 |
4
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> M e. oMnd ) |
| 43 |
7
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> Y e. B ) |
| 44 |
42 28
|
syl |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> M e. Mnd ) |
| 45 |
|
simplr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> n e. NN0 ) |
| 46 |
6
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> X e. B ) |
| 47 |
1 3 44 45 46
|
mulgnn0cld |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( n .x. X ) e. B ) |
| 48 |
1 3 44 45 43
|
mulgnn0cld |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( n .x. Y ) e. B ) |
| 49 |
|
simpr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( n .x. X ) .<_ ( n .x. Y ) ) |
| 50 |
9
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> X .<_ Y ) |
| 51 |
5
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> M e. CMnd ) |
| 52 |
1 2 41 42 43 47 46 48 49 50 51
|
omndadd2d |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n .x. X ) ( +g ` M ) X ) .<_ ( ( n .x. Y ) ( +g ` M ) Y ) ) |
| 53 |
1 3 41
|
mulgnn0p1 |
|- ( ( M e. Mnd /\ n e. NN0 /\ X e. B ) -> ( ( n + 1 ) .x. X ) = ( ( n .x. X ) ( +g ` M ) X ) ) |
| 54 |
44 45 46 53
|
syl3anc |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n + 1 ) .x. X ) = ( ( n .x. X ) ( +g ` M ) X ) ) |
| 55 |
1 3 41
|
mulgnn0p1 |
|- ( ( M e. Mnd /\ n e. NN0 /\ Y e. B ) -> ( ( n + 1 ) .x. Y ) = ( ( n .x. Y ) ( +g ` M ) Y ) ) |
| 56 |
44 45 43 55
|
syl3anc |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n + 1 ) .x. Y ) = ( ( n .x. Y ) ( +g ` M ) Y ) ) |
| 57 |
52 54 56
|
3brtr4d |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n + 1 ) .x. X ) .<_ ( ( n + 1 ) .x. Y ) ) |
| 58 |
12 15 18 21 40 57
|
nn0indd |
|- ( ( ph /\ N e. NN0 ) -> ( N .x. X ) .<_ ( N .x. Y ) ) |
| 59 |
8 58
|
mpdan |
|- ( ph -> ( N .x. X ) .<_ ( N .x. Y ) ) |