Step |
Hyp |
Ref |
Expression |
1 |
|
omndmul.0 |
|- B = ( Base ` M ) |
2 |
|
omndmul.1 |
|- .<_ = ( le ` M ) |
3 |
|
omndmul.2 |
|- .x. = ( .g ` M ) |
4 |
|
omndmul.o |
|- ( ph -> M e. oMnd ) |
5 |
|
omndmul.c |
|- ( ph -> M e. CMnd ) |
6 |
|
omndmul.x |
|- ( ph -> X e. B ) |
7 |
|
omndmul.y |
|- ( ph -> Y e. B ) |
8 |
|
omndmul.n |
|- ( ph -> N e. NN0 ) |
9 |
|
omndmul.l |
|- ( ph -> X .<_ Y ) |
10 |
|
oveq1 |
|- ( m = 0 -> ( m .x. X ) = ( 0 .x. X ) ) |
11 |
|
oveq1 |
|- ( m = 0 -> ( m .x. Y ) = ( 0 .x. Y ) ) |
12 |
10 11
|
breq12d |
|- ( m = 0 -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( 0 .x. X ) .<_ ( 0 .x. Y ) ) ) |
13 |
|
oveq1 |
|- ( m = n -> ( m .x. X ) = ( n .x. X ) ) |
14 |
|
oveq1 |
|- ( m = n -> ( m .x. Y ) = ( n .x. Y ) ) |
15 |
13 14
|
breq12d |
|- ( m = n -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( n .x. X ) .<_ ( n .x. Y ) ) ) |
16 |
|
oveq1 |
|- ( m = ( n + 1 ) -> ( m .x. X ) = ( ( n + 1 ) .x. X ) ) |
17 |
|
oveq1 |
|- ( m = ( n + 1 ) -> ( m .x. Y ) = ( ( n + 1 ) .x. Y ) ) |
18 |
16 17
|
breq12d |
|- ( m = ( n + 1 ) -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( ( n + 1 ) .x. X ) .<_ ( ( n + 1 ) .x. Y ) ) ) |
19 |
|
oveq1 |
|- ( m = N -> ( m .x. X ) = ( N .x. X ) ) |
20 |
|
oveq1 |
|- ( m = N -> ( m .x. Y ) = ( N .x. Y ) ) |
21 |
19 20
|
breq12d |
|- ( m = N -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( N .x. X ) .<_ ( N .x. Y ) ) ) |
22 |
|
omndtos |
|- ( M e. oMnd -> M e. Toset ) |
23 |
|
tospos |
|- ( M e. Toset -> M e. Poset ) |
24 |
4 22 23
|
3syl |
|- ( ph -> M e. Poset ) |
25 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
26 |
1 25 3
|
mulg0 |
|- ( Y e. B -> ( 0 .x. Y ) = ( 0g ` M ) ) |
27 |
7 26
|
syl |
|- ( ph -> ( 0 .x. Y ) = ( 0g ` M ) ) |
28 |
|
omndmnd |
|- ( M e. oMnd -> M e. Mnd ) |
29 |
1 25
|
mndidcl |
|- ( M e. Mnd -> ( 0g ` M ) e. B ) |
30 |
4 28 29
|
3syl |
|- ( ph -> ( 0g ` M ) e. B ) |
31 |
27 30
|
eqeltrd |
|- ( ph -> ( 0 .x. Y ) e. B ) |
32 |
1 2
|
posref |
|- ( ( M e. Poset /\ ( 0 .x. Y ) e. B ) -> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) |
33 |
24 31 32
|
syl2anc |
|- ( ph -> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) |
34 |
1 25 3
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = ( 0g ` M ) ) |
35 |
34
|
adantr |
|- ( ( X e. B /\ Y e. B ) -> ( 0 .x. X ) = ( 0g ` M ) ) |
36 |
26
|
adantl |
|- ( ( X e. B /\ Y e. B ) -> ( 0 .x. Y ) = ( 0g ` M ) ) |
37 |
35 36
|
eqtr4d |
|- ( ( X e. B /\ Y e. B ) -> ( 0 .x. X ) = ( 0 .x. Y ) ) |
38 |
37
|
breq1d |
|- ( ( X e. B /\ Y e. B ) -> ( ( 0 .x. X ) .<_ ( 0 .x. Y ) <-> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) ) |
39 |
6 7 38
|
syl2anc |
|- ( ph -> ( ( 0 .x. X ) .<_ ( 0 .x. Y ) <-> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) ) |
40 |
33 39
|
mpbird |
|- ( ph -> ( 0 .x. X ) .<_ ( 0 .x. Y ) ) |
41 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
42 |
4
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> M e. oMnd ) |
43 |
7
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> Y e. B ) |
44 |
42 28
|
syl |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> M e. Mnd ) |
45 |
|
simplr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> n e. NN0 ) |
46 |
6
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> X e. B ) |
47 |
1 3
|
mulgnn0cl |
|- ( ( M e. Mnd /\ n e. NN0 /\ X e. B ) -> ( n .x. X ) e. B ) |
48 |
44 45 46 47
|
syl3anc |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( n .x. X ) e. B ) |
49 |
1 3
|
mulgnn0cl |
|- ( ( M e. Mnd /\ n e. NN0 /\ Y e. B ) -> ( n .x. Y ) e. B ) |
50 |
44 45 43 49
|
syl3anc |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( n .x. Y ) e. B ) |
51 |
|
simpr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( n .x. X ) .<_ ( n .x. Y ) ) |
52 |
9
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> X .<_ Y ) |
53 |
5
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> M e. CMnd ) |
54 |
1 2 41 42 43 48 46 50 51 52 53
|
omndadd2d |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n .x. X ) ( +g ` M ) X ) .<_ ( ( n .x. Y ) ( +g ` M ) Y ) ) |
55 |
1 3 41
|
mulgnn0p1 |
|- ( ( M e. Mnd /\ n e. NN0 /\ X e. B ) -> ( ( n + 1 ) .x. X ) = ( ( n .x. X ) ( +g ` M ) X ) ) |
56 |
44 45 46 55
|
syl3anc |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n + 1 ) .x. X ) = ( ( n .x. X ) ( +g ` M ) X ) ) |
57 |
1 3 41
|
mulgnn0p1 |
|- ( ( M e. Mnd /\ n e. NN0 /\ Y e. B ) -> ( ( n + 1 ) .x. Y ) = ( ( n .x. Y ) ( +g ` M ) Y ) ) |
58 |
44 45 43 57
|
syl3anc |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n + 1 ) .x. Y ) = ( ( n .x. Y ) ( +g ` M ) Y ) ) |
59 |
54 56 58
|
3brtr4d |
|- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n + 1 ) .x. X ) .<_ ( ( n + 1 ) .x. Y ) ) |
60 |
12 15 18 21 40 59
|
nn0indd |
|- ( ( ph /\ N e. NN0 ) -> ( N .x. X ) .<_ ( N .x. Y ) ) |
61 |
8 60
|
mpdan |
|- ( ph -> ( N .x. X ) .<_ ( N .x. Y ) ) |