| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ogrpsub.0 |
|- B = ( Base ` G ) |
| 2 |
|
ogrpsub.1 |
|- .<_ = ( le ` G ) |
| 3 |
|
ogrpinv.2 |
|- I = ( invg ` G ) |
| 4 |
|
ogrpinv.3 |
|- .0. = ( 0g ` G ) |
| 5 |
|
isogrp |
|- ( G e. oGrp <-> ( G e. Grp /\ G e. oMnd ) ) |
| 6 |
5
|
simprbi |
|- ( G e. oGrp -> G e. oMnd ) |
| 7 |
6
|
ad2antrr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> G e. oMnd ) |
| 8 |
|
omndmnd |
|- ( G e. oMnd -> G e. Mnd ) |
| 9 |
1 4
|
mndidcl |
|- ( G e. Mnd -> .0. e. B ) |
| 10 |
7 8 9
|
3syl |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> .0. e. B ) |
| 11 |
|
simplr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> X e. B ) |
| 12 |
|
ogrpgrp |
|- ( G e. oGrp -> G e. Grp ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> G e. Grp ) |
| 14 |
1 3
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( I ` X ) e. B ) |
| 15 |
13 11 14
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> ( I ` X ) e. B ) |
| 16 |
|
simpr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> .0. .<_ X ) |
| 17 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 18 |
1 2 17
|
omndadd |
|- ( ( G e. oMnd /\ ( .0. e. B /\ X e. B /\ ( I ` X ) e. B ) /\ .0. .<_ X ) -> ( .0. ( +g ` G ) ( I ` X ) ) .<_ ( X ( +g ` G ) ( I ` X ) ) ) |
| 19 |
7 10 11 15 16 18
|
syl131anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> ( .0. ( +g ` G ) ( I ` X ) ) .<_ ( X ( +g ` G ) ( I ` X ) ) ) |
| 20 |
1 17 4
|
grplid |
|- ( ( G e. Grp /\ ( I ` X ) e. B ) -> ( .0. ( +g ` G ) ( I ` X ) ) = ( I ` X ) ) |
| 21 |
13 15 20
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> ( .0. ( +g ` G ) ( I ` X ) ) = ( I ` X ) ) |
| 22 |
1 17 4 3
|
grprinv |
|- ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) ( I ` X ) ) = .0. ) |
| 23 |
13 11 22
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> ( X ( +g ` G ) ( I ` X ) ) = .0. ) |
| 24 |
19 21 23
|
3brtr3d |
|- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> ( I ` X ) .<_ .0. ) |
| 25 |
6
|
ad2antrr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> G e. oMnd ) |
| 26 |
12
|
ad2antrr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> G e. Grp ) |
| 27 |
|
simplr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> X e. B ) |
| 28 |
26 27 14
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( I ` X ) e. B ) |
| 29 |
25 8 9
|
3syl |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> .0. e. B ) |
| 30 |
|
simpr |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( I ` X ) .<_ .0. ) |
| 31 |
1 2 17
|
omndadd |
|- ( ( G e. oMnd /\ ( ( I ` X ) e. B /\ .0. e. B /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( ( I ` X ) ( +g ` G ) X ) .<_ ( .0. ( +g ` G ) X ) ) |
| 32 |
25 28 29 27 30 31
|
syl131anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( ( I ` X ) ( +g ` G ) X ) .<_ ( .0. ( +g ` G ) X ) ) |
| 33 |
1 17 4 3
|
grplinv |
|- ( ( G e. Grp /\ X e. B ) -> ( ( I ` X ) ( +g ` G ) X ) = .0. ) |
| 34 |
26 27 33
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( ( I ` X ) ( +g ` G ) X ) = .0. ) |
| 35 |
1 17 4
|
grplid |
|- ( ( G e. Grp /\ X e. B ) -> ( .0. ( +g ` G ) X ) = X ) |
| 36 |
26 27 35
|
syl2anc |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( .0. ( +g ` G ) X ) = X ) |
| 37 |
32 34 36
|
3brtr3d |
|- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> .0. .<_ X ) |
| 38 |
24 37
|
impbida |
|- ( ( G e. oGrp /\ X e. B ) -> ( .0. .<_ X <-> ( I ` X ) .<_ .0. ) ) |