| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ogrpsub.0 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ogrpsub.1 |
⊢ ≤ = ( le ‘ 𝐺 ) |
| 3 |
|
ogrpinv.2 |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 4 |
|
ogrpinv.3 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 5 |
|
isogrp |
⊢ ( 𝐺 ∈ oGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd ) ) |
| 6 |
5
|
simprbi |
⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ oMnd ) |
| 7 |
6
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝐺 ∈ oMnd ) |
| 8 |
|
omndmnd |
⊢ ( 𝐺 ∈ oMnd → 𝐺 ∈ Mnd ) |
| 9 |
1 4
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 10 |
7 8 9
|
3syl |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 0 ∈ 𝐵 ) |
| 11 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) |
| 12 |
|
ogrpgrp |
⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) |
| 13 |
12
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝐺 ∈ Grp ) |
| 14 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 15 |
13 11 14
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ 𝑋 ) |
| 17 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 18 |
1 2 17
|
omndadd |
⊢ ( ( 𝐺 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 19 |
7 10 11 15 16 18
|
syl131anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 20 |
1 17 4
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 21 |
13 15 20
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 22 |
1 17 4 3
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = 0 ) |
| 23 |
13 11 22
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = 0 ) |
| 24 |
19 21 23
|
3brtr3d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 𝐼 ‘ 𝑋 ) ≤ 0 ) |
| 25 |
6
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 𝐺 ∈ oMnd ) |
| 26 |
12
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 𝐺 ∈ Grp ) |
| 27 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 𝑋 ∈ 𝐵 ) |
| 28 |
26 27 14
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 29 |
25 8 9
|
3syl |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 0 ∈ 𝐵 ) |
| 30 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( 𝐼 ‘ 𝑋 ) ≤ 0 ) |
| 31 |
1 2 17
|
omndadd |
⊢ ( ( 𝐺 ∈ oMnd ∧ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ≤ ( 0 ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 32 |
25 28 29 27 30 31
|
syl131anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ≤ ( 0 ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 33 |
1 17 4 3
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = 0 ) |
| 34 |
26 27 33
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = 0 ) |
| 35 |
1 17 4
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) 𝑋 ) = 𝑋 ) |
| 36 |
26 27 35
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( 0 ( +g ‘ 𝐺 ) 𝑋 ) = 𝑋 ) |
| 37 |
32 34 36
|
3brtr3d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 0 ≤ 𝑋 ) |
| 38 |
24 37
|
impbida |
⊢ ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) → ( 0 ≤ 𝑋 ↔ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) ) |