Step |
Hyp |
Ref |
Expression |
1 |
|
ogrpsub.0 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ogrpsub.1 |
⊢ ≤ = ( le ‘ 𝐺 ) |
3 |
|
ogrpinv.2 |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
|
ogrpinv.3 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
isogrp |
⊢ ( 𝐺 ∈ oGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd ) ) |
6 |
5
|
simprbi |
⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ oMnd ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝐺 ∈ oMnd ) |
8 |
|
omndmnd |
⊢ ( 𝐺 ∈ oMnd → 𝐺 ∈ Mnd ) |
9 |
1 4
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
10 |
7 8 9
|
3syl |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 0 ∈ 𝐵 ) |
11 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) |
12 |
|
ogrpgrp |
⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝐺 ∈ Grp ) |
14 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
15 |
13 11 14
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
16 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ 𝑋 ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
18 |
1 2 17
|
omndadd |
⊢ ( ( 𝐺 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
19 |
7 10 11 15 16 18
|
syl131anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
20 |
1 17 4
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
21 |
13 15 20
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
22 |
1 17 4 3
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = 0 ) |
23 |
13 11 22
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = 0 ) |
24 |
19 21 23
|
3brtr3d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 𝐼 ‘ 𝑋 ) ≤ 0 ) |
25 |
6
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 𝐺 ∈ oMnd ) |
26 |
12
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 𝐺 ∈ Grp ) |
27 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 𝑋 ∈ 𝐵 ) |
28 |
26 27 14
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
29 |
25 8 9
|
3syl |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 0 ∈ 𝐵 ) |
30 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( 𝐼 ‘ 𝑋 ) ≤ 0 ) |
31 |
1 2 17
|
omndadd |
⊢ ( ( 𝐺 ∈ oMnd ∧ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ≤ ( 0 ( +g ‘ 𝐺 ) 𝑋 ) ) |
32 |
25 28 29 27 30 31
|
syl131anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ≤ ( 0 ( +g ‘ 𝐺 ) 𝑋 ) ) |
33 |
1 17 4 3
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = 0 ) |
34 |
26 27 33
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = 0 ) |
35 |
1 17 4
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) 𝑋 ) = 𝑋 ) |
36 |
26 27 35
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( 0 ( +g ‘ 𝐺 ) 𝑋 ) = 𝑋 ) |
37 |
32 34 36
|
3brtr3d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 0 ≤ 𝑋 ) |
38 |
24 37
|
impbida |
⊢ ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) → ( 0 ≤ 𝑋 ↔ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) ) |