Metamath Proof Explorer


Theorem ogrpinv0le

Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)

Ref Expression
Hypotheses ogrpsub.0 B=BaseG
ogrpsub.1 ˙=G
ogrpinv.2 I=invgG
ogrpinv.3 0˙=0G
Assertion ogrpinv0le GoGrpXB0˙˙XIX˙0˙

Proof

Step Hyp Ref Expression
1 ogrpsub.0 B=BaseG
2 ogrpsub.1 ˙=G
3 ogrpinv.2 I=invgG
4 ogrpinv.3 0˙=0G
5 isogrp GoGrpGGrpGoMnd
6 5 simprbi GoGrpGoMnd
7 6 ad2antrr GoGrpXB0˙˙XGoMnd
8 omndmnd GoMndGMnd
9 1 4 mndidcl GMnd0˙B
10 7 8 9 3syl GoGrpXB0˙˙X0˙B
11 simplr GoGrpXB0˙˙XXB
12 ogrpgrp GoGrpGGrp
13 12 ad2antrr GoGrpXB0˙˙XGGrp
14 1 3 grpinvcl GGrpXBIXB
15 13 11 14 syl2anc GoGrpXB0˙˙XIXB
16 simpr GoGrpXB0˙˙X0˙˙X
17 eqid +G=+G
18 1 2 17 omndadd GoMnd0˙BXBIXB0˙˙X0˙+GIX˙X+GIX
19 7 10 11 15 16 18 syl131anc GoGrpXB0˙˙X0˙+GIX˙X+GIX
20 1 17 4 grplid GGrpIXB0˙+GIX=IX
21 13 15 20 syl2anc GoGrpXB0˙˙X0˙+GIX=IX
22 1 17 4 3 grprinv GGrpXBX+GIX=0˙
23 13 11 22 syl2anc GoGrpXB0˙˙XX+GIX=0˙
24 19 21 23 3brtr3d GoGrpXB0˙˙XIX˙0˙
25 6 ad2antrr GoGrpXBIX˙0˙GoMnd
26 12 ad2antrr GoGrpXBIX˙0˙GGrp
27 simplr GoGrpXBIX˙0˙XB
28 26 27 14 syl2anc GoGrpXBIX˙0˙IXB
29 25 8 9 3syl GoGrpXBIX˙0˙0˙B
30 simpr GoGrpXBIX˙0˙IX˙0˙
31 1 2 17 omndadd GoMndIXB0˙BXBIX˙0˙IX+GX˙0˙+GX
32 25 28 29 27 30 31 syl131anc GoGrpXBIX˙0˙IX+GX˙0˙+GX
33 1 17 4 3 grplinv GGrpXBIX+GX=0˙
34 26 27 33 syl2anc GoGrpXBIX˙0˙IX+GX=0˙
35 1 17 4 grplid GGrpXB0˙+GX=X
36 26 27 35 syl2anc GoGrpXBIX˙0˙0˙+GX=X
37 32 34 36 3brtr3d GoGrpXBIX˙0˙0˙˙X
38 24 37 impbida GoGrpXB0˙˙XIX˙0˙