Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ogrpsub.0 | |
|
ogrpsub.1 | |
||
ogrpinv.2 | |
||
ogrpinv.3 | |
||
Assertion | ogrpinv0le | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ogrpsub.0 | |
|
2 | ogrpsub.1 | |
|
3 | ogrpinv.2 | |
|
4 | ogrpinv.3 | |
|
5 | isogrp | |
|
6 | 5 | simprbi | |
7 | 6 | ad2antrr | |
8 | omndmnd | |
|
9 | 1 4 | mndidcl | |
10 | 7 8 9 | 3syl | |
11 | simplr | |
|
12 | ogrpgrp | |
|
13 | 12 | ad2antrr | |
14 | 1 3 | grpinvcl | |
15 | 13 11 14 | syl2anc | |
16 | simpr | |
|
17 | eqid | |
|
18 | 1 2 17 | omndadd | |
19 | 7 10 11 15 16 18 | syl131anc | |
20 | 1 17 4 | grplid | |
21 | 13 15 20 | syl2anc | |
22 | 1 17 4 3 | grprinv | |
23 | 13 11 22 | syl2anc | |
24 | 19 21 23 | 3brtr3d | |
25 | 6 | ad2antrr | |
26 | 12 | ad2antrr | |
27 | simplr | |
|
28 | 26 27 14 | syl2anc | |
29 | 25 8 9 | 3syl | |
30 | simpr | |
|
31 | 1 2 17 | omndadd | |
32 | 25 28 29 27 30 31 | syl131anc | |
33 | 1 17 4 3 | grplinv | |
34 | 26 27 33 | syl2anc | |
35 | 1 17 4 | grplid | |
36 | 26 27 35 | syl2anc | |
37 | 32 34 36 | 3brtr3d | |
38 | 24 37 | impbida | |