Step |
Hyp |
Ref |
Expression |
1 |
|
ogrpsub.0 |
|
2 |
|
ogrpsub.1 |
|
3 |
|
ogrpinv.2 |
|
4 |
|
ogrpinv.3 |
|
5 |
|
isogrp |
|
6 |
5
|
simprbi |
|
7 |
6
|
ad2antrr |
|
8 |
|
omndmnd |
|
9 |
1 4
|
mndidcl |
|
10 |
7 8 9
|
3syl |
|
11 |
|
simplr |
|
12 |
|
ogrpgrp |
|
13 |
12
|
ad2antrr |
|
14 |
1 3
|
grpinvcl |
|
15 |
13 11 14
|
syl2anc |
|
16 |
|
simpr |
|
17 |
|
eqid |
|
18 |
1 2 17
|
omndadd |
|
19 |
7 10 11 15 16 18
|
syl131anc |
|
20 |
1 17 4
|
grplid |
|
21 |
13 15 20
|
syl2anc |
|
22 |
1 17 4 3
|
grprinv |
|
23 |
13 11 22
|
syl2anc |
|
24 |
19 21 23
|
3brtr3d |
|
25 |
6
|
ad2antrr |
|
26 |
12
|
ad2antrr |
|
27 |
|
simplr |
|
28 |
26 27 14
|
syl2anc |
|
29 |
25 8 9
|
3syl |
|
30 |
|
simpr |
|
31 |
1 2 17
|
omndadd |
|
32 |
25 28 29 27 30 31
|
syl131anc |
|
33 |
1 17 4 3
|
grplinv |
|
34 |
26 27 33
|
syl2anc |
|
35 |
1 17 4
|
grplid |
|
36 |
26 27 35
|
syl2anc |
|
37 |
32 34 36
|
3brtr3d |
|
38 |
24 37
|
impbida |
|